2014届河北唐山市高三年级第一学期期末考试文科数学试卷与答案(带解析).doc
《2014届河北唐山市高三年级第一学期期末考试文科数学试卷与答案(带解析).doc》由会员分享,可在线阅读,更多相关《2014届河北唐山市高三年级第一学期期末考试文科数学试卷与答案(带解析).doc(17页珍藏版)》请在麦多课文档分享上搜索。
1、2014届河北唐山市高三年级第一学期期末考试文科数学试卷与答案(带解析) 选择题 设全集 ,已知集合 , ,则( ) A B C D 答案: B 试题分析: , , . 考点: 1.一元二次不等式的解法; 2.集合的交集运算 . 椭圆 的左、右焦点分别为 , 是 上两点, ,则椭圆 的离心率为( ) A B C D 答案: D 试题分析:由条件 ,设 ,则 ,在 中有, 整理有 : ,即 ,即 ,在 中有 , 将 代入得: ,即 ,即 ,即 . 考点: 1.椭圆的标准方程与性质; 2.勾股定理 . 的零点个数为( ) A 4 B 5 C 6 D 7 答案: B 试题分析: , ,图像如图所示,
2、由图像看出与 有 5个交点, 的零点个数为 5个 . 考点: 1.函数零点问题; 2.函数图像 . 如图,直三棱柱 的六个顶点都在半径为 1的半球面上,侧面 是半球底面圆的内接正方形,则侧面 的面积为( ) A 2 B 1 C D 答案: C 试题分析:球心在面 的中心 上, 为截面圆的直径, ,底面外接圆圆心 位于 中点, 外心 在 中点上,设正方形边长为 , 中, , , , ,即 ,则 , . 考点: 1.中位线; 2.勾股定理 . 某几何体的三视图如图所示,则该几何体的体积为( ) A B C D 答案: B 试题分析:由三视图可知:几何体是底面是半径为 2的半径扣掉一个三角形,. 考
3、点: 1.三视图; 2.柱体体积 . 执行下边的程序框图,则输出的 n是( ) A 4 B 5 C 6 D 7 答案: C 试题分析:第一次循环: 第二次循环: 第三次循环: 第四次循环: 第五次循环: 第六次循环: 输出 . 考点:程序框图 . 在公比大于 1的等比数列 中, , ,则 ( ) A 96 B 64 C 72 D 48 答案: A 试题分析: , , 或 ,又 公比大于 1, , 即 , . 考点: 1.等比数列的性质; 2.等比数列的通项公式 . 是 上的奇函数,当 时, ,则当 时,( ) A B C D 答案: C 试题分析:试题分析: , , ,又 是 上的奇函数, ,
4、 . 考点: 1.函数的奇偶性; 2.函数式 . 设 满足约束条件 ,则目标函数 的最大值是( ) A 3 B 4 C 5 D 6 答案: D 试题分析:由约束条件可得区域图像如图所示:则目标函数 在点取得最大值 . 考点:线性规划 . 已知命题 ,命题 ,则下列命题中为真命题的是( ) A B C D 答案: B 试题分析: , 或 , 命题 为假命题; , ,即 , 命题 为真命题; 为真命题 . 考点: 1.高次不等式的解法; 2.三角方程的解法; 3.命题的真假; 4.简单的逻辑连结词 . 以原点为中心,焦点在 y轴上的双曲线 C的一个焦点为 ,一个顶点为 ,则双曲线 C的方程为( )
5、 A B C D 答案: C 试题分析: 双曲线 C的一个焦点为 ,一个顶点为 , , , 双曲线 C的方程为 . 考点: 1.双曲线的标准方程; 2.双曲线的焦点、顶点 . 设复数 ,则 ( ) A B C D 答案: B 试题分析: , . 考点: 1.复数的除法计算; 2.共轭复数 . 填空题 已知 ,函数 在区间 单调递减,则 的最大值为 . 答案: -12 试题分析: , , 函数 在区间 单调递减, ,即 ,即 , 的最大值为 -12. 考点:利用导数研究函数的单调性 . 在等差数列 中,已知 ,则 的值为 . 答案: 试题分析: , . 考点:等差数列的性质 . 已知 的定义域为
6、 . 答案: 试题分析: , , , , 的定义域为 . 考点: 1.函数的定义域; 2.对数不等式的解法 . 一支游泳队有男运动员 32人,女运动员 24人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为 14的样本,则抽取男运动员的人数为 . 答案: 试题分析:由题意得: , ,所以抽取男运动员 8人 . 考点:分层抽样问题 . 解答题 已知圆 ,直线 ,以 O 为极点, x轴的正半轴为极轴,取相同的单位长度建立极坐标系 . ( 1)将圆 C和直线 方程化为极坐标方程; ( 2) P是 上的点,射线 OP交圆 C于点 R,又点 Q在 OP上且满足,当点 P在 上移动时,求点 Q轨迹的
7、极坐标方程 . 答案:( 1) , ;( 2) 试题分析:本题主要考查直角坐标系与极坐标之间的互化,考查学生的转化能力和计算能力 .第一问,利用直角坐标方程与极坐标方程的互化公式 ,进行转化;第二问,先设出 的极坐标,代入到中,化简表达式,又可以由已知得 和 的值,代入上式中,可得到 的关系式即点 轨迹的极坐标方程 . 试题:( )将 , 分别代入圆 和直线 的直角坐标方程得其极坐标方程为 , 4分 ( )设 的极坐标分别为 , , ,则 由 得 6分 又 , , 所以 , 故点 轨迹的极坐标方程为 10分 考点: 1.直角坐标方程与极坐标方程的互化; 2.点的轨迹问题 . 如图, 内接于 上
8、, , 交 于点 E,点 F在 DA的延长线上, ,求证: ( 1) 是 的切线; ( 2) . 答案:( 1)证明过程详见;( 2)证明过程详见 . 试题分析:本题主要以圆为几何背景考查线线垂直、相等的证明,考查学生的转化与化归能力 .第一问,要证明 是 的切线,需要证明 或,由于 ,所以 与 相等,而 与 相等,而 与 相等,又因为 ,所以通过角的代换得也就是 为 ;第二问,先利用切割线定理列出等式,再通过边的等量关系转换边,得到求证的表达式 . 试题:( )连结 因为 ,所以 是 的直径 因为 ,所以 又因为 ,所以 4分 又因为 , , 所以 ,即 , 所以 是 的切线 7分 ( )由
9、切割线定理,得 因为 , , 所以 考点: 1.同弦所对圆周角相等; 2.切割线定理 . 已知函数 . ( 1)证明: ; ( 2)当 时, ,求 的取值范围 . 答案:( 1)证明过程详见;( 2) . 试题分析:本题考查导数的运算以及利用导数研究函数的单调性、最值等基础知识,考查综合分析问题解决问题的能力、转化能力和计算能力 .第一问,因为,所求证 ,所以只需分母 即可,设函数 ,对 求导,判断函数的单调性,求出最小值,证明最小值大于 0即可,所求证的不等式的右边,需证明函数 的最大值为 1即可,对 求导,判断单调性求最大值;第二问,结合第一问的结论 ,讨论 的正负,当时, ,而 与 矛盾
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
本资源只提供5页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
1000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 河北 唐山市 三年级 一学期 期末考试 文科 数学试卷 答案 解析
