[考研类试卷]考研数学三(线性代数)模拟试卷138及答案与解析.doc
《[考研类试卷]考研数学三(线性代数)模拟试卷138及答案与解析.doc》由会员分享,可在线阅读,更多相关《[考研类试卷]考研数学三(线性代数)模拟试卷138及答案与解析.doc(11页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(线性代数)模拟试卷 138 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 n 阶方阵 A、B、C 满足关系式 ABC=E,其中 E 为 n 阶单位矩阵,则必有( )(A)ACB=E(B) CBA=E(C) BAC=E(D)BCA=E2 设 A 是 mn 矩阵,B 是 nm 矩阵,则( )(A)当 mn 时,必有行列式|AB|0(B)当 mn 时,必有行列式|AB|=0(C)当 nm 时,必有行列式|AB|0(D)当 nm 时,必有行列式|AB|=03 要使 1= 都是线性方程组 AX=0 的解,只要系数矩阵 A 为( )二、填空题4 5 方程 f
2、(t)= =0 的实根为_6 7 设 为 3 维列向量, T 是 的转置,若 T= ,则 T=_8 设 A 是 43 矩阵,且 r(A)=2,B= ,则 r(AB)=_9 曲面 x12+x22+x32+4x1x2+4x1x3+4x2x3=0 的标准方程是_三、解答题解答应写出文字说明、证明过程或演算步骤。9 求下列行列式的值:10 11 11 计算下列 n 阶行列式的值,(其中未写出的元素均为 0):12 13 14 15 16 设有矩阵 Amn,B nm,已知 EmAB 可逆,证明:E BA 可逆,且(E nBA)1 =En+B(EmAB) 1 A17 设 n 阶矩阵 A 满足 AAT=I,
3、其中 I 为 n 阶单位矩阵,且 |A|0,求|A+I|18 设向量组 1, 2, 3 线性相关,向量组 2, 3, 4 线性无关,问: (1) 1 能否由2, 3 线性表示 ?证明你的结论 (2) 4 能否由 1, 2, 3 线性表示?证明你的结论19 已知 i=(i1, i2, in)T(i=1,2,r;r n) 是 n 维实向量,且1, 2, r 线性无关已知 =(b1,b 2,b n)T 是线性方程组的非零解向量试判断向量组 1, 2, r, 的线性相关性20 问 为何值时,线性方程组 有解,并求出解的一般形式21 设 A*为 n 阶方阵 A 的伴随矩阵(n2)证明:22 已知(1 ,
4、1,1,1) T 是线性方程组 的一个解,试求(1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(2)该方程组满足 x2=x3 的全部解23 设 3 阶矩阵 A 的特征值为1,1,1,对应的特征向量分别为 (1,1,1)T, (1,0, 1)T,(1,2,4) T求 A10024 设 A 为 n 阶非零方阵,且存在某正整数 m,使 Am=O求 A 的特征值并证明 A不与对角矩阵相似24 设 n 维实向量 =(a1,a 2,a n)T0,方阵 A=T25 证明:对于正整数 m,存在常数 t,使 Am=tm1 A,并求出 t;26 求可逆矩阵 P,使 P1 AP 成对角矩阵27
5、 设 c1,c 2,c n 均为非零实常数,A=(a ij)nn 为正定矩阵,令bij=aijcicj(i,j=1,2,n) ,矩阵 B=(bij)nn,证明矩阵 B 为正定矩阵考研数学三(线性代数)模拟试卷 138 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 D【试题解析】 由题设条件 A(BC)=E,知 A 与 BC 互为逆矩阵, BCA=E【知识模块】 线性代数2 【正确答案】 B【试题解析】 当 mn 时,有 r(AB)r(A)nm ,故 m 阶方阵 AB 为降秩方阵,即|AB|=0或解:当 mn 时,方程组 BX=0 中的方程个数 n 小
6、于未知量个数 m,故 BX=0 有非零解,从而方程组(AB)X=0 有非零解 |AB|=0【知识模块】 线性代数3 【正确答案】 A【试题解析】 此时基础解系至少含 2 个向量( 1 及 2),故有 3r(A)2,因而 r(A)1,故只有 A 正确【知识模块】 线性代数二、填空题4 【正确答案】 (a 1a4b 1b4)(a2a3b 2b3)【知识模块】 线性代数5 【正确答案】 t=6【试题解析】 注意行列式各行元素之和均等于 6t,f(t)=(t6)(t 2+3)【知识模块】 线性代数6 【正确答案】 【知识模块】 线性代数7 【正确答案】 3【试题解析】 T=a12+a22+a32=1+
7、1+1=3【知识模块】 线性代数8 【正确答案】 2【试题解析】 因 B 为满秩方阵,故 r(AB)=r(A)=2【知识模块】 线性代数9 【正确答案】 5y 12y 22y 32=1【试题解析】 A= 的特征值为 1=5, 2=3=1,曲面的标准方程为5y12y 22y 32=1【知识模块】 线性代数三、解答题解答应写出文字说明、证明过程或演算步骤。【知识模块】 线性代数10 【正确答案】 160【知识模块】 线性代数11 【正确答案】 -10【知识模块】 线性代数【知识模块】 线性代数12 【正确答案】 (1) n1 (n1) n2 先将第 2 行的(1)倍加到第 i 行(i=3,n),再
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
本资源只提供5页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 模拟 138 答案 解析 DOC
