考研类试卷考研数学一一元函数微分学模拟试卷

(1,1+)内均有 f(x)x(C)在 (1-,1)内 f(x)x(D)在(1-,1)内 f(x)x;在(1,1+)内 f(x)asina,+2cosa+a26 求微分方程 y“-2y-e2x=0 满足条件 y(0)=1,y(0)=1 的解27 设(x 0,y 0)是抛物线 yax 2bxc 上的一

考研类试卷考研数学一一元函数微分学模拟试卷Tag内容描述:

1、1,1内均有 fxxC在 1,1内 fxxD在1,1内 fxx;在1,1内 fxasina,2cosaa26 求微分方程 y2ye2x0 满足条件 y01,y01 的解27 设x 0,y 0是抛物线 yax 2bxc 上的一点,若在该点的切。

2、C可导,但导数不连续D可导,且导数连续3 设 fx可导,Fxfx1sinx,若使 Fx在 x0 处可导,则必有 Af00B f00C f0f00Df0一 f004 设函数 fx在区间一 ,内有定义,若当 x一 ,时,恒有fxx 2,则x0 。

3、内A处处可导B恰有一个不可导点C恰有两个不可导点D至少有三个不可导点5 设函数 fx在, 内连续,其导函数的图形如图所示,则 fx有A一个极小值点和两个极大值点B两个极小值点和一个极大值点C两个极小值点和两个极大值点D三个极小值点和一个极。

4、yx在任意点 x 处的增量y ,且当x0 时, 是x 的高阶无穷小,y0,则 y1等于 A2B C D 3 函数 fxx2x 一 2sin2x在区间一 上不可导点的个数是 A3B 2C 1D04 曲线 yx 一 12x 一 32 的拐点个数。

5、x00,fx 00,则函数 fx在点x0 处 A取得极大值.B取得极小值.C某邻域内单调增加.D某邻域内单调减少.3 曲线 yx 一 1x 一 22x 一 33x 一 44 的拐点是 A1 ,0.B 2,0 .C 3,0 .D4 ,0.4 。

6、的极大值B f0是 fx的极小值C点 0,f0是曲线 yfx的拐点Df0不是 fx的极值,点0,f0也不是曲线 yfx的拐点3 设函数 yfx具有二阶导数,且 fx0,fx0,x 为自变量 x 在点 x0 处的增量,y 与 dy 分别为 f。

7、数D向量组 1, 2, m 的任意一个部分向量组线性无关2 设 A 是 n 阶矩阵,且 A 的行列式A0,则 A A必有一列元素全为 0B必有两列元素对应成比例C任一列向量是其余列向量的线性组合D必有一列向量是其余列向量的线性组合3 设 n。

8、C f1f0f1f0Df1f0f1f02 设 fx ,Fx 0xftdt,则 AFx在 x0 点不连续B Fx在 x0 点不可导C Fx在 x0 点可导,F0f0DFx在 x0 点可导,但 F0f03 设函数 fx在一,存在二阶导数,且 f。

9、是数列xn收敛于 a 的A充分条件但非必要条件B必要条件但非充分条件C充分必要条件D既非充分条件又非必要条件3 设函数 fx在, 内单调有界,x n为数列,下列命题正确的是A若x n收敛,则fx n收敛B若 xn单调,则fx n收敛C若 f。

10、设函数 fx是定义在1,1内的奇函数,且 分数:2.00A.aB.aC.0D.不存在3.设 fx 分数:2.00A.极限不存在B.极限存在,但不连续C.连续,但不可导D.可导4.设函数 fx可导,且曲线 yfx在点x 0 ,fx 0 处的切。

11、曲线 分数:2.00A.1 条B.2 条C.3 条D.4 条3.设函数 fxe x 1e 2x 2e nx n,其中 n 为正整数,则 f0 分数:2.00A.1 n1 n1B.1 n n1C.1 n1 nD.1 n n4.设 fx在0,1。

12、设在0,1上 fx0,则 f0,f1,f1一 f0或 f0f1的大小顺序是 分数:2.00A.f1f0f1f0B.f1f1f0f0C.f1f0f1f0D.f1f0f1f03.设 fx 分数:2.00A.Fx在 x0 点不连续B.Fx在 x。

13、设 Fxgxx,xa 是 x的跳跃间断点,ga存在,则 g00,ga0 是 Fx在 xa 处可导的 分数:2.00A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件3.已知函数 yyx在任意点 x 处的增量y 分数。

14、1nD1 nn3 设 fx在0,1上连续,在 0,1内可导,且 f01,f10,则在0,1内至少存在一点 ,使 4 fxxex 的 n 阶麦克劳林公式为 5 若 fx在开区间a,b内可导,且 x1,x 2 是a,b内任意两点,则至少存在一点。

15、 也不是曲线 yfx的拐点2 设 fx二阶连续可导,且 ,则 Af0是 fx的极小值B f0是 fx的极大值C 0,f0是曲线 y fx的拐点Dx0 是 fx的驻点但不是极值点3 设函数 fx满足关系 fxf 2xx,且 f00,则 Af0。

16、设函数 fx 分数:2.00A.不连续B.连续,但不可导C.可导,但导数不连续D.可导,且导数连续3.设 fx可导,Fxfx1sinx,若使 Fx在 x0 处可导,则必有 分数:2.00A.f00B.f00C.f0f00D.f0f004.设。

17、设常数 k0,函数 fxlnx 一 分数:2.00A.3.B.2.C.1.D.0.3.设函数 fx 分数:2.00A.都存在且相等.B.都不存在.C.都存在但不相等.D.仅有一个存在.4.设两函数 fx及 gx都在 xa 处取得极大值,则。

18、设 分数:2.00A.fx在 xx 处必可导且 fx 0 a.B.fx在 xx 0 处连续,但未必可导.C.fx在 xx 0 处有极限但未必连续.D.以上结论都不对.二填空题总题数:5,分数:10.003.设函数 fx由方程 y 一 xe。

19、2.fx在一,内二阶可导,fx0 分数:2.00A.单调增加且大于零.B.单调增加且小于零.C.单调减少且大于零.D.单调减少且小于零.3.设 yfx是方程 y一 2y4y0 的一个解,且 fx 0 0,fx 0 0,则函数 fx在点 x 。

20、0若 xx 0,x 0,xx 0时 fxgx,则 fx与 gx在 xx0有相同的可导性若 邻域x 0,x 0,当 xx 0,x 0时 fxgx,则 fx与 gx在 xx0有相同的可导性若可导,则 fx0gx0设函数 fx在x 0,x 0上连。

【考研类试卷考研数学一一元】相关DOC文档
标签 > 考研类试卷考研数学一一元函数微分学模拟试卷[编号:192480]

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1