ImageVerifierCode 换一换
格式:PDF , 页数:42 ,大小:855.81KB ,
资源ID:1017496      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1017496.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(REG NACA-TN-1303-1947 A transonic propeller of triangular plan form.pdf)为本站会员(registerpick115)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

REG NACA-TN-1303-1947 A transonic propeller of triangular plan form.pdf

1、4(.I-.,!1.,WT. DOGNATIONAL ADVISORY COMMHTEEFOR A.ERONAU IICSTECHNICAL NOTENo.13)3.A TRANSONIC PROPELLER OF TRIANGULAR PLAN FORMBy Herbert S.RibnerLangleyMemorial AeronauticalLaboratoryLangleyField,Va.v!WashingtoiiMay 1947P .*- .I-USINESS,SCIENCEmoreextendedsignificancein appendixB;yrop-ulsiveeffici

2、encypreemre ,.massdensityof airflightvelocityradiusof pro.lerdiameterof propeller(baseof isoscelestriangle)bladBchordof yropellerlootbladechordof propeller(heightof isoscelestri-sngle)pitchof propeller-mileadmmce-dismeterratio (V/nD)JN nomsl forceQT thrustProvided by IHSNot for ResaleNo reproduction

3、 or networking permitted without license from IHS-,-,-NACATNYIYal%sNo.1303.forceparallelto y-axismomentof inertiaacuteanglebetweenx-sxisandbladesectionangleof .MtackSubscriptsandcoefficient(Drag/qS)areasuperscripts:L.E. measuredat leadingedge, .T.E. measuredat trailingedees duetOn duetof duetoP duet

4、oi idealsuctionnomuilforce“skinfrictionpressureR “ resultantWt weightedTHEORYFoRFLATHAN FORMThe theorythatis developedhereini.gderivedfromthetheoryof two-dimensional”flowspresentedin reference1. Thepresenttreatmentfortherotatintriangle,as thatof reference1 forthetriangleat an angleof attack,appliest

5、o thelimitingcondi-tionof verylowaspectratio. TheLimitationson aspectratioarediscussedin the sectionentitled“AspectratiotandinappendixA. .Reference1 pointsout thatthefl.ow.abouta pointedairfoilof verylow aspectratiomay be consideredtwodimensionalwhenviewedin crosssectionsperpendicularto thedirection

6、ofmotion.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.4 NACATN No,1303Considerk longflattriangukrairfoilmovingpointforemostandrotatingaboutthe -, ,.,. . . . . . . . . . . , :.:.:;:+,:,T;.:-,=:,: “. .”v: - . . . . . . . -:., : ., -: . . ,. -y, . .

7、 . :., .-. . -. . -.-.e. . -”,Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-,NACATN NO a71 1303 7.for thethrustoftheuntwistedpropeller.Thisvalue,in whichtheprofiledragisneglected,is called.the idealthrust. The idealthrustis thusindependentof forrd

8、epeedao longas equation(7)is applicable.Applicabilityis limitetito therangeof smalllocalangleof attack,orhighvaluesof V/KDOEfficiency.-The idealefficiencyof theflattriangularpro-peller(thatis,the”efficiency”tithprofiladragneglected)isThe insertionofequations(5)and (7)givesa valueof 1/2,or50 percent.

9、 It is shownhereinafterthattheaddition.of a suitabletwistallowsa peakidealefficiencyof 100percent. /Origin of thethrust.-The wakeof an ordinarypropellerbehaves “likea twistedribbonmovingaxiallyrearward.Backwa?xlmamentumis impazzedto theairwith the s . .:.,;, ,-: , , . , .:, .,. . . ., - :- - .-:;:,.

10、 - ?, 2 . .:-, -,:.tj,+.-. ,. ,-, ,. /.-. . . . . . . . .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-MACA.TNOo 1303 9“The powerinputminusthewalce”powershouldequaltheusefulpoweras follows:m.ru6t pow it iSIIDapproximtdy() Jmy l-p/D,.(lo)The ccmresp

11、ondingvelocitycomponentfortheflatplanformis oy. . Torqw.- AccorUngto theforegoingdiscussion,theslighttwistedplanform(pitch,p) rotatingwithangularvelocitymexhibitsthesme two-dimensional-flowpatternat a section xas a fistplanformrotatingtithangularvelocityapproxl-()Jmately 1- . The pressuredlstriution

12、forthe slightlyPbtwistedpl,j, -,.;+,:.; :,.:. .,-: .,-. -.-. - -. -.,-,. :“,.-.:.,;j+(t):+-(zj.,.may be pactly -(B4). . .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN NO.1303Implicitd.ifferent : ,. :+-. . . ,:. 7 .1, ,.-+-.“:;+.-.,7:X,. , ,

13、 : .:.”; - ,:“:-.,. -.?. . . . ,- .:-. . . .,. . :-., .,.+ . ,.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NAC!ATN NO.1303 25The substitutionofeqlt?.ons(B7)and (B8)in equatio(B4)givestheexcesspresspreaa .Al?= w2(a + b)28/2c2e-2(*22q- )(Sinh25 Co

14、s27,- a +b)2e-45 (B9)JThe excesspressureforceonan elementof surfaceof theellipticcylinderof unitlengthin theaxialdirection(x-direction)hasa caaponentparallelto they-axisofamountAt the surfaceof”thecyltider(,=,.),Y= ccoahOcosq=acos q 1(B1O)Therefore. =Substitutingequation(B9)intoequatim (B1.1)with $

15、 go,eliminatinggo and c by meansof equations(BIO),and evaluatingJgives( 2ab2(a+b)2 2(a-b)2 sin22- )1COS 29 -(a-b)2 b cos dqa2-2a.F=-8(a2sin2V+ b2 co82q)(B12)Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-lWMA NO.1303a26m ”b) thisIs approximatelyfYo

16、2a%(2ein22q- 1) cosq dqdF=-8(a2sin2q+ b2)The integralfromthemiddleofthebottomsurfacearoundtherightedgeto themiddleofthetopsurfaceis.and(B13)This givesthe suctionrotatingflatplateofperunitlenh actingat the edgesof asemiwidtha.Provided by IHSNot for ResaleNo reproduction or networking permitted withou

17、t license from IHS-,-,-.,“ . IUTEGMTIONOFOFJ?orpurpoeesofsideredthe limiting- -AhlmMtic . ., . . . . .! ,.-,. .,lmEsmREmovERmm N-To AlmsWAKE OF _ ,-.calculationtheflat-ribbon%Msemay be con-formCd? ellinticcvlinderas +ileminoraxisShrhlkS to zero. Tus,the excesso theocalprespwe overthe “streamWesaureo

18、derivedIn apexix,B“*s;.applicablelikewisehere. “ . . .-,.In anypiane x = Constant,p“nlemetof areainthe coordi-nate C,q is givenby J d d where J is theJacobiandefinedafterequation(B6). The excespressurefce on thlaelementofareais. . .Substitutingfor AP fromequation(B9)gfves1al?= (I+ (E+ *c2e.2g )sin22

19、q-sinh 2E coa27 -(a+b) e 1243aga?8= fm2(a+b)2 28,.(cl)The exoesspressureforceonthe entireplane x = Constant is .obtainedby integratingfrom O to 2SX in andfrom 30 to ain g, where = definestheboundaryof the ellipticcyl.jmr.The integrationves ,.-dgoF=&c2(a+3)2e c -&-4301(a+ b)2 2 (C2)Provided by IHSNot

20、 for ResaleNo reproduction or networking permitted without license from IHS-,-,-28 NACA NO. 1303 The ldmitof thisexpressionas the ellipticcylindershrinlmintoa flatribbon (+o, )!3.+0, c-a isalim F= 24- ag+oSincethe semiwid.th.a of theflat-rilbonwakeis one-halftheriiameterD of thetrianglethisis(C3).wh

21、i.ohisinagreement&th equation“(7).Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.lTACA NO. 1303 29,.AJ?PENDIXDcoMPom OF REsumNT VEWCITYNURMKLTOLZMDINGIWGEOFTWISD3DTRIANGLEINSCREWM3TIONThe twistedtrianglemay bedefinedthin itsenvelopeconer=cx1.by the

22、screwsurfacei92=CxAn elamentofthe edgenaybe expressedbyis a unitvectorinthedirectioniere 1 a unitvecta in thedirectionof increasingvectoralong x. Thu3 .of increasingr, 31 ise, and? is aunit= Tlcl + 1rc2+ 3by equations(Dl)and (D2).L-et= be a vectorlyingtithe surfacethe edgewithpositivesenseoutward. Itmaytriplevectarproduct(m),.-andperpendiculartobe obtainedby the”.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1