ImageVerifierCode 换一换
格式:PDF , 页数:78 ,大小:3.28MB ,
资源ID:1017539      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1017539.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(REG NACA-TN-3857-1956 Experimental investigation at low speed of the effects of wing position on the static stability of models having fuselages of various cross section and unswep.pdf)为本站会员(towelfact221)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

REG NACA-TN-3857-1956 Experimental investigation at low speed of the effects of wing position on the static stability of models having fuselages of various cross section and unswep.pdf

1、6xlta“%JNATIONALADVISORYCOMMITTEEFORAERONAUTICSEXPERIMENTALTECHNICAL NOTE 3857INVESTIGATIONAT LOWSPEEDOFTHEEFFECTSOFWINGPOSITIONONTHESTATICSTABILITYOFMODELSHAVINGFUSELAGESOFVARIOUSCROSSSECTIONANDUNSWEPTAND45SWEPTBACKSURFACESByWilliamLetkoLangleyAeronauticalLaboratoryLangleyField,Va.-WashingtonNovemb

2、er1956AFMDcProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-wingTECHLIBRARYKAFB,NMNATIONALADVISORYCOMMITTEElKIRAERONAUTICSIlllllll!lllullll!llllllll-TECHNICALNOTE3857 acihL?37EXPERIMENTALINVESTIGATIONATIQWSPEEDOFTHEEFFECTSOFWINGPOSITIONONTHESTATICSTAB

3、ILITYOFMODEISHAVINGFUSEIAGESOFVARIOUSCROSSSECTIONANDUNSWEPFAND45SWEPJBACKSURFACESByWilli.smLetkoSUMMARYAnexperimentalinvestigationwastie todeterminetheeffectsofpositiononthelow-speedstaticlongitudinalsadstaticlateralstabilityderivativesofairplmemodelsham fuselsgesofsquareandrectangularcrosssections

4、unsweptandk”sweptbacksurfaces.ThehorizontaltailofeachmodelwaslocatedonthefuselsgecenterHne.Theresultsoftheinvestigateionindicatedthatatlowanglesofattackthecompleteunsweptmodelswiththewinginthehighpositionweremorestableorleastlongitudinallyunstable;whereas,forthesweptmodelstherewaallittlechangeinlong

5、itudinalstabiliwithchangesinwingposition. Forboththesweptandunsweptccnrpleteconfigurationsthelow-wingpositionwasgenerallytheleaststableinthemediumsngle-of-attackrange;whereas,athighanglesofattacktherewaalittlesi.gnificsntdifferenceinthestabilityofthemodelsduetowingposi-tion.Theresultsalsoshowedthati

6、nthelow mediumangle-of-attackrqe movingthewingfrcmthelowtothehighpositiongenerallycausesadecreaseinthedirectionalstabillforboththesweptandunsweptconfigurations.Thelow-wingconfigurationwasindicatedtohavethesmallestdetrimentaleffectscausedbysidewashonthetailcontributiontothestaticlateralstabilityderiv

7、ativesforalmosttheentiretestangle-of-attackrange.-Theresultsalsoshowedthatwing-fuselsgeinterferencecausesanincreaseineffectivedihedralsnglewhenthewingismovedfrcnnthelowtothehighpositionasoccurredforthecirculsr-cross-sectionfuselagereportedoninpreviousinvestigations.Provided by IHSNot for ResaleNo re

8、production or networking permitted without license from IHS-,-,-2INTRODUCTION.GPitch-upandlossindirectionalstabilityathighanglesofattackhavebeenencounteredinsomehigh-speedairplanesandhaveledtotheconsiderationofchamgesinvariousairplanecomponentsinanattempttoalleviateortoeliminatethesedifficulties.San

9、eofthechangesunderconsiderationareinwingposition,fuselagecross-sectionalshape,andhorizontal-tailposition.Severalsystematicinvestigationshavebeenmade”todeterminetheeffectsofthesechangesonthestabilitychsmcter-isticsofmodehwithfuselagesofcircularcrosssection(refs.1 and2,forexample)andtheeffectsoffusela

10、gecross-sectionalshapeonthestaticstabilitycharacteristicsofmidwingmodebhavingunsweptud45sweptbacksurfaces(ref.3).Thesamemodelsusedintheinvestigationofreference3wereusedinthepresentinvestigationwhichwasconcernedwiththeeffectsofvsxyingthewingpositiononthestaticstabilitycharacteristicsofmodelshavingfus

11、elagesofsquareandrectangularcrosssectionsandhavinginterchangeableunsweptend45 sweptbackwingandtailsurfaces.Forthepresentinvestigationthehorizontaltailwaslocatedon thefuselagecenterline,aswasthecaseintheinvestigationofreference3. *Thedataarereferredtothestabilitysystemofsxeswiththeoriginonthefuselage

12、centerline;thelongitudinallocationisattheprojectionofthewingaerdymmiccenteronthefuselagecenterline.Positivedirectionsofforces,moments,andangulardisplacementsweshowninfigure1. ThecoefficientsCL liftcoefficient,FqG Idr% coefficientF;q%andsymbolsaredefinedasfollows:% lateral-forcecoefficient,FY/Wcl rol

13、ling-momentcoefficient,Mx/w% pitching-momentcoefficient,My/q*% yawing-momentcoefficient,%/W%JFL liftProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NAC!ATN3857 3drag(approximatelateralforcerollingmomentpitchingmomentyatingmcunent-c pressure,1V2Pfree-

14、streamvelocitymassdensiofairaspectratio,span,measuredplan-formarea#/$perpeticu tofuselagecenterlinechord,measuredparalleltoplaneofsymmetryrootchordtipchordmeanaerodynamiccoordinatealongJ%+chord;forexanple,w=% Cl 2WY-sxis,measuredfrcmplaneofsymmetor taillength,distancepsralleltofuselagecenterline/fro

15、mmountingpointtO Ev 4averagefuselageheighta%wingrootaveragefuselagewidthatwingrootperpendiculardistancefromfuselagerootchordcoincideswithfuselage/or 75H4center line to EJ4 (tailcenterline)Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4AhRrwdxiAAP4a

16、NACATN3857#wingheight,perpendicul.sxdistancefromfusehuzecenterlimetowingchordcenterline)localradius oflane(positivewhenwingisabforsqusrefuselege,d =wlongitudinaldistancealongfuselagecenterlinemeasuredframfusee noseeffectivedihedralangle,degtaperratio,ct/crangleofsweepofangleofsideslipazimuthangleang

17、leofattackquarter-chordlineyp%J contributionofthetailgrouptoderivatives;thatis,forforforthewingon, + =P (%)PwFvH-thewingoff, = (%)FVH -awing-tailconfiguration,Myp*Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-5Subscriptsandabbreviations:w wing;used

18、withsubscripts1,2,and3 todenotewingpositionrelativetofusele(seefig.2)F fuselage;usedwithsubscripts1to4 todenotevariousfuselsges(Seefig.3)E horizontaltail;usedwithsubscripts1 and2 todenoteunsweptandsweptconfigurations,respective(seefig.k)v verticaltail;usedwithsubscripts1and2 todenoteunsweptandsweptc

19、onfigurations,respectively(seefig.4)APPARATUSANDMODEISThetestswereconductedinthe6-by6-foottestsectionoftheLangleystabilitytunnel.Themodelsusedweredesignedtopermittestsofthewingalone,thefing-tailcombination,thefuselagealone,thewing-fuselsgecombination(withthewingatseveraldifferentpositions),orthefuse

20、lagewithanytailconfigurationwithorwithoutthewings.Therelativelocationsofthewing,fuselage,andtailsurfacessreshowninfigure2.FuselagesofsqusreandrectangularcrosssectionshavingroundedcornersweretestedA sideviewandcrosssectionofeachfuselagearegiveninfigure3togetherwiththedesignationbywhichthefuselagesare

21、Identified.Thecoordinatesofthesquareandrectsmgulsxfuselagesweresodeterminedthatthevsriationofthecross-sectionalareaofeachfuselagealongthelongitudinalaxiswasthessmeasthatofthecirculsr-cross-sectionfuselage(Fl)discussedinreference3.Thecoordinatesofthefuselagewithcircularcrosssectionaregivenintable1.!T

22、heconfigurationstestedhadbothsweptandunsweptwingandtailsurfaces.Thequsrter-chordLLnesweresweptback and45fortheunsweptsadsweptsurfaces,respectively.Thewingshadataperratioof0.6- anaspectratioof4. Tnetailsurfacesalsohada taperratioof0.6. Theaspectratioandothergecmetrfccharacteristicsofthevarioustailsur

23、facesaswellasthoseofthewingsaregivenintableII. Thegeaetriccharacteristicsofthevarioustailsurfacesareshowninfigure4 togetherwiththedesignationchosentoidentifyeachsurface.T wingsweretestedatthemtdwinglocationsndalsoatposi-tionsone-thirdofthemaxtmumlmdydepthaboveandbelowthefuselagecenterline.Alllifting

24、surfacesweresetatO0 incidencetithrespecttothefuselagecenterline.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-6 NACATN3857xThemodelsweremountedona singlestrutsupportatapointonthefuselagecenterline,locatedforthesweptandunsweptconfigurations Passhown

25、infigure2. A photographofthesweptconfigurationwithfuse-lsge2 andwiththewinginthemiddlelocationisgivenasfigure5.Forthewing-tailconfigurationsthetailwasmountedonasteeltubeofsmalldiameterwhichwasfastenedtothewingorwingmountingbracket.Thelocationsofthewingandtailcorrespondedtothelocationsofthewingandtai

26、lwhentestedincombinationwithafuselage.Theisolatedtallwasmountedonthesanetubewhichwasthenattachedtothemodelsupportstrut.Forthewing-tailsndisolated-tailtests,thetailareaincludedtheportionnormallyenclosedinForcesandmaentsweremeasuredbymeanscomponentbalancesystem.TESTSANDCORRECTIONSthefuselage.ofa conve

27、ntionalsix-Testswerered-eatamnic pressureof24.9 poundspersquarefootwhichcorrespondstoaMachnumberofabout0.13andaReynoldsnumberofabout0.71X 106basedonthemeanaerodymsmicchordofthewings.The Pmodelsweretestedthroughanangle-of-attackrangefrom-kuptomdbeyondmsdmumlift(ofwingsalone)atsagles.ofsideslipof0and5

28、.Testsofthecompleteconfigurationswerealsomsdeatanglesofattack however,somedataarepresentedtoshowthesupport-strutinterferenceforseveralcomplete-ndel configurations.RESULTSANDDISCUSSIONPresentationofResultsThestaticlongitudinalstabilitycharacteristicsofthemodelsaregiveninfigures6 to13andthestaticlater

29、alstabilitycharacteristicsme presentedinfigures14to26. A summaryoftheconfigurationsinves- .tigatedandofthefiguresthatpresentthebasicdatafortheseconfig-urationsisgivenintable111. 7Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN3837StaticLongitu

30、dinalStabilityCharacteristicsCompletemodels.-Theeffectsofwingpositiononthestaticlongi-tudinalstabilitycharacteristicsofthecqlete modearegivenfigure6. In thelowangle-of-attackrangefortheunsweptconfigura-tions,themodelswiththewinginthehighpositionwerethemoststableorleastlongitudinallyunstable.Forallwi

31、ngpositionstheconfigura-tionswiththeshallowfuselagewereunstableinthelowangle-of-attackrangeduetothelargeinstabilityoffuselage4. Wingpositionhtilittleeffectonthelongitudinalstabilityoftheswept-wingmodelsinthelowangle-of-attackrange.Althoughdifferencesintheterevalues,showninfigure8,causedsomechangeint

32、rimfortheswept-wingmodels,thestabilityinthisrsmgewaaunchangedbyneglectingthetaredata.Forboththesweptsadunsweptmodebthelow-wingmodelwasgenerallytheleaststableinthemediumangle-of-attackrange.Atthehighanglesofattacktherewaslittlesignificantdiffrenceinthestabilityofthemodehduetowingposition.Forsnglesofa

33、ttackjustbelowthestall,theunsweptconfigurationwiththelowwingsmdthesweptconfigurationwiththehighwingappeartohaveslightlybetterlongitudinalcharacter-isticsthantheotherconfigurations.Boththeunsweptandsweptmodelsshowedapitch-uptendency;how-ever,fortheunsweptmodeltheangleforpitch-upwasabovethestallsingle

34、ofattackandtheeffectforanactualairplanewouldnotbeasimportantasthatforthesweptmodelswhichshowedthistendencyatanangleofattackbelowstall.Wingpositionhadlittleeffectonpitch-uptendencyofthemodels.Asamatterofhrterestandinordertogiveanindicationofthechangesintrimthatmsyoccurwithangleofside- slip,changesinp

35、itching-momentcoefficientwithangleofsideslipforthecompletemode atseveraldifferentanglesofattacksrepresentedinfigure7.Thedataoffigure6 showthatforboththesweptandunsweptcon-figurationschangesinwingpositioncauselittlechangeindragcoeffi-cientatlowanglesofattack.Atthehighanglesofattackchangesinwingpositi

36、ongenerallycausea lsrgerchangeindragcoefficientforthesweptmodelsthanfortheunsweptmodelstiththelow-wingmodelsprovfdingthelowestdragandthehigh-wingmodelsthehighestdragcoefficient.Thereasonforthelowvaluesofdragcoefficientuptoansngleofattackof8fortheunsweptcompleteconfigurationwithfuselage3 isnotclesrsi

37、ncethedataforthewing-fuselageconfigurationdonotshowthiseffect(seefig.g(b).Fortheunsweptmodelsthelow-wingconfigurationsgen-erallyhavea slightlyhigherliftcoefficientatlowuglesofattackthsmthemidwingorhigh-wingconfigurations;whereas,forthesweptmcdelsthelow-wingconfigurationsgenerallyhavea slightlylowerl

38、iftcoeffi-cientthanthemodelswithotherwingpositions.Athighanglesofattacktheeffectofwingpositionisgenerallygreaterforthesweptmodelsthanfortheunsweptmodelswiththehighwingpositionprovidingthehighestliftandthelowwingpositionthelowest.Provided by IHSNot for ResaleNo reproduction or networking permitted wi

39、thout license from IHS-,-,-8In ordertogive, CL,and CD foranindicationofthethecompletemodels,lUICAl!N3857.struttsrecorrectionstofigure8hasbeenprepared.9Althoughthecorrectionshavenotbeenappliedtothedata,itappearsfromthefigurethatthegeneralconclusionssrenotalter. Inthe applicationofthecorrectionstheval

40、uesoCL and showninfig-ure8 shouldbeaddedtothedata,whereastheincrementsof C; shouldbesubtractedfromthedata.Ingeneral,theeffectsofwingpositiononthelongitudinalchar-acteristicsofthemodelswiththesqusreandrectangularfuselagesmeshnilartothoseobtainedwiththecircularfuselagereportedinrefer-ence1.Wing-fusel.

41、age configurations.-Forthewing-fuselageconfigurations,changesinwingpositionhadonlya smelleffectonthelongitudinalstabilitythroughouttheangle-of-attackrangetested.(Seefig.9.)Themidwingconfigurationgenerallywaslessunstablethanthehigh-orlow-wingconfigurations.Therewereonlysmallchangesindragcoeffi-cienta

42、tlowanglesofattackduetowingposition.Aswasthecaseforthecompletemodels,chmgesinwingpositioncsuseda lsrgerincreaseindragcoefficientforthesweptmodelsthanfortheunsweptmodelsathighanglesofattackwiththelow-wingmodelshavingthelowestdragandthehigh-wingmodelshavingthehighest.drag.me effectsofwingpositiononthe

43、liftcoefficientforthewiyg-fuselageconfigurationsweresimilartothosenotedforthecompletemodels.Fuselageandfuselsge-tailconfigurations.-Thedataforthefuse-lageandfuselage-tailconfigurationshavekeenpresentedinreference3butarealsopresentedhereforcompleteness.Infigures10and11arepresentedthesta-t_iclongitudi

44、nalcharacteristicsofthefuse-e adfuselage-tailconfigurations,respectively.Thepitch-uptendencyshown “forthefuselage-unswept-tailconfigurationatmoderateanglesofattmk .is,ofcourse,duetostallingofthehorizontaltail.Theresretwosetsofpitching-momentdataforthefuselagealonesincethecenterofmomentswasslightlydi

45、fferentdependingonwhetherthefuselagewasusedinconjunctionwithsweptorunsweptwg-tailsurfaces.is differenceincenter-of-momentlocationcausedonlyasmalldifferenceinthelongi-tudinalstabilityofthefuselages.wing,wing-tail,smdisolated-tailconfimrations.-Thelongitudinalcharacteristicsofthewing,wing-tail,andisol

46、ated-tai_lconfiationsaregiveninfigures12mi-13.Ismuch”asthecharacteristicsofthesesweptandunsweptwingshavebeenrepor%ed=+useve?%lothernvestigat+onsJsuchsareferences1,5, ti 6, theyarenotdiscussedherein.Aswasmentionedinthesectionentitled“Apparatw.andModeM”thewing-tailandtail-aloneconfigurationsweretesteQ

47、withthetail.-4*-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN3857 9mountedattheappropriatetaillengthona steeltubeofmnalldismeter4 whichwasfastenedtothewingorwingmoktingbracket.Thelocationsofthewingandtailcorrespondedtothelocationsofthewingan

48、dtailwhentestedinconibinationwithafuselage.Sincetheeffectsofchangesinwingpositionwerethelargestforthemodelwithfuselageofdeeprectangularcrosssection(F3),onlytheresultsforthewinglocationsthatcorrespondtothoseoffuselage3 arepresentedinfigures12and13.Alsoinfigure13arepresentedthelongitudinalcharacteristicsoftheisolatedtail.Figure12showsthatthereislittleeffectofwinglocation-thatis,winglocationwithrespecttothebalancecenter-onthestaticlongitudinalcharacteristicsofthewings.A ctudyoffigure13showsthataddingthewingtotheisolatedtailcausesadecreaseinlongitudinalstabilityatlo

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1