ImageVerifierCode 换一换
格式:PDF , 页数:53 ,大小:991.52KB ,
资源ID:1017540      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1017540.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(REG NACA-TN-3860-1956 Method for calculating effects of dissociation on flow variables in the relaxation zone behind normal shock waves.pdf)为本站会员(towelfact221)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

REG NACA-TN-3860-1956 Method for calculating effects of dissociation on flow variables in the relaxation zone behind normal shock waves.pdf

1、1.,icdcomMETHODFOR AERONAUTICSTECHNICAL NOTE 3860CALCULATING EFFECTS OF DISSOCIATION ON FLOWRELAXATION ZONENORMAL SHOCK WAVESBy OhllS. EvansLare y Aeronautical LaboratoryLangley Field, Va.WashingtonDecember 1956.Provided by IHSNot for ResaleNo reproduction or networking permitted without license fro

2、m IHS-,-,-TECHLIBRARY-, NMNATIONAL ADVISORY COMMITTEEIUUHNICJUNOTE3860METHOD FOR CALCULATING EFFECTS OF DISSOCIATION ON FLOWVARIABLES IN THE RELAXATION ZONE P3HINDNORMAL SHOCK WAVESBy John S. EvansSLMMARYGeneralized expressionsand charts which depend on the shock Machnumber, the initial state of the

3、 gas, and an enthalpy parameter (theenthalpy divided by the ratio of the pressure to the density) are presentedfor the temperature, pressure, density, and flow velocity behind a shockwave. The charts an enthalpy plot for dissociated air have been usedto find the relation in graphical form between th

4、e degree of dissociationin air and the enthalpypsrameter. Plots are presented of the resultingdependence of the flow variables on the degree of dissociation.ABecause the chemical reaction rates needed to predict the dependence+ of degree of dissociation on distance behind the shock are not known,ord

5、er-of-magnitudeestimates oftheir values have been used in a numericalexample, the purpose of which is to illustrate the use of reaction-rateequations to predict relaxation time and distance behind the shock front.One of the problemsthe determination of theproduced by strong shockINTRODUCTIONassociat

6、ed with flight at hypersonic speeds iseffects on the air of the high temperatureswaves. Among these effects, dissociation ofthe diatomic molecules 02 snd N2 is of considerable concern becausethe large amount of ener required for dissociation constitutes a heatsink which reduces the air temperature,

7、sometimes by thousands of degrees,from its undissociatedvalue. On the other hsnd, the tendency of atomsto recombine on a surface and yield the heat of dissociation may consti-tute an additional heat-transfermechanism which could cause an increaseh aerodynamic heating.Because dissociation behind a sh

8、ock wave proceeds at a finite rate,-a transition zone exists in which the gas properties gradually approachtheir equilibrium values at some distance behind the shock front. Similar*Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 NACA TN 3860relaxat

9、ion zones exist for other degrees of freedom (suchas vibration, delectronic excitation,and ionization)but thus, the calculationsdo not apply in the relaxationzone.The approach to equilibrium is discussed in reference 1 and approxi-mate expressionsvalid for small deviations from equilibriumare develo

10、ped.These expressions are exponential in character. The only treatment foundwhich was essentiallydifferent from that of reference 1 was that of refer-ence 4 where expressionsderived from kinetic-theoryrate equations wereintegratedto trace the course of the flow variables in the relaxationzone.This p

11、aper presents a method for calculatingthe variation in theproperties of a real gas in the relaxation zone behind a strong shockwave as a function of the degree of dissociation. When numerical resultsare desired, rate eqwtions can be introducedas a fbl step to ffnd the evariation of the properties wi

12、th distance behind the shock front. -SYMROLSalDspeed of sound in air at 300 K, 3.475 X 104 cm/secdissociation ener, 117,960 cal/mole for 02 and225,080 cal/mole for N2d distance behind shock, cmNoG = or 2.45 X 1019 m01ecsT1 cmatm-l for T1 = 300 K, .g mole fractionK equilibrimnconstantbased on partial

13、 pressures, atm(molecules)-1 -1 -% specific reaction rate for dissociation, 3 seccm PProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA TN 3860 3krENoPR- 8,0 K were cal-reference 6. Correction to latest value of dissociation ener usually, only the

14、translationalenertaken in account.386oavail-isThe values used in this report were obtained from equation (23)by,assuming that .g %.% i%? i?i% %:!? z: g;: %2 3% ;% kg 4W:LM 52L.6,2.0? M4 12J4 iwq 33.21 47.37 l.yl 84.32 11%.31 la.1.llx3.33lam !za.la 2%.k3 2*.29 334.77 377.83423.% *n.;$ .g.g :$: %$ g.

15、g:g g.w ._3 ;:$g .g :gg 2.3-26.mE.62=89 33.XH:% %: ZZ :%$?%:2 % E$ % %1 $ jjg g;2.126.0)12#59a.8733.2.U6.Q23.2,6$2a.9233.2648.4363,70 .61lc4,9H5.55.75.96.16-3.6.56.76.97.L7.37.37.T7.98.18.58.78.78.99.19.39.99.-I9.920.1* , .I1.Provided by IHSNot for ResaleNo reproduction or networking permitted witho

16、ut license from IHS-,-,-VgE E:% Z.63b34:924.e 42. 4J.809 %.934.7681.W 1.:X 2% ;:s z% k% W;.635 ,3s71.4 2.* 3.2C5 4.381 .m 7.376 9.lgl11.226u.b 15. %1 18. 21.493 .29$q.50 31.43535.UM 39.13243.309z.617 .SEg1, 9 2.1763.1.11h,2 .ti 7.139 0.* ljl.t3j6u.q6 u.h I$:g ;:%:% : ;.% :,% ;g ;g g;n .4v.% .m m. am

17、Gu26.397%:% :BJ ;.g :=.eg gg I.!; E :g ;R :;% ,.a ,.q% U, 13.6J ,. M.cq ,:% :$ :% ;:$ ?% ;:$ 2.1 . 9.452 U.l u.q54 lJ.o# lJ.a g. EM T1 = 300 K; p = 10-4 Jatmospheres J(a) 02 dissociationp, atm P/Pl iiT, OK d, cmB t, secaO.ocm x 10-6.026.oo.123.199,1409,0008,8008,6008,koo8,2008,0007,8007,6007,4007,20

18、07,0006,8006,5404.534.564.394.624.664.704.754.804.864.935.005.08;.;.0.0240.0241.0241.0241.0242.0242.0242.0243.0243.0244.0244. 024. 024.02460.0000.0016.0043.0075.0115.0166.0229.0310.04m.0574.0799a71 lu%.1820).0000a71 0120.0280.0450.0610.oa.0945.Ulo.1275.1440.1600.1750.1895.21037.90:%8.048.128.208.3o8

19、.408.528.658.798.959.109.341.7701.7651.7551.7401.725I.llo1.6881.665L6401.6181.5901.5621.5351.498.275.383(b) N2 dissociationt, sec0.00 x 10-3.08.27.681.442.996.3513.3428.69m31.4981.4701.4301.3931.3501.3031.2621.2211.1781.148P/PlT, % d, cmp, atma6,54o6,400:;0%5,8005,6005,4005,2005,4,8700.0246.0247.024

20、7.0248.0249.0250.0251.0251.0252.02530.2103.2155.2235.2320.2400.2485.2570.2650.2730.27925.285.375.525.665.826.006.186.376.586.739.349.529.8010.0810.3910.7511.1011.4711.8812.18:13.733.269.0139.1286.6583.11212Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1