ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:20.82KB ,
资源ID:1018318      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1018318.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(REG NASA-LLIS-0671-2000 Lessons Learned - Demagnetization of Ferromagnetic Parts.pdf)为本站会员(deputyduring120)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

REG NASA-LLIS-0671-2000 Lessons Learned - Demagnetization of Ferromagnetic Parts.pdf

1、Best Practices Entry: Best Practice Info:a71 Committee Approval Date: 2000-03-08a71 Center Point of Contact: JPLa71 Submitted by: Wil HarkinsSubject: Demagnetization of Ferromagnetic Parts Practice: Practice: In those cases where spacecraft science requirements or attitude control systems impose con

2、straints on the magnetic characteristics of components and the use of ferromagnetic material cannot be avoided, perform a complete demagnetization of the ferromagnetic parts, individually, prior to assembly.Abstract: Preferred Practice for Design from NASA Technical Memorandum 4322A, NASA Reliabilit

3、y Preferred Practices for Design and Test.Benefit:In an unassembled state, ferromagnetic parts can be exposed to stronger AC demagnetizing fields, as high as 60 mT (600 Gauss), thus assuring a lower level of remanent magnetization than can be achieved after the parts are mounted on assemblies.Attain

4、ing a low level of remanent magnetization minimizes the adverse effects of unwanted fields. In those cases where magnetic compensation may be required, the ability to apply high level fields to an unmounted part enables the utilization of techniques to stabilize the magnetic moment of the part.Imple

5、mentation Method:The part being demagnetized is placed in a controlled AC magnetic field and rotated on all three of its axes as the field is exponentially increased and then returned exponentially to its lowest level. During this process, the ambient magnetic field must be reduced to near zero inte

6、nsity ( 500 nT) while the parts are being demagnetized. This condition can be established either through the use of a triaxial coil system, to generate nulling fields, or by placing the parts in a magnetically shielded container. Effective demagnetization cannot be achieved in the presence of the ea

7、rths field (0.05 mT) because a significant number of magnetic domains will remain aligned along the ambient field vector and result in a residual dipole moment.After the demagnetization process is completed, the part and the assembly to which it is mounted should not be exposed to magnetic fields in

8、 excess of 2 mT. This control assures that any subsequent demagnetization of the assembly at 5 mT will be adequate.The size and configuration of the demagnetizing coil may vary depending upon the specific parts being treated. However, in most cases, a simple solenoid provides the adequate flexibilit

9、y for such items as connectors, fasteners, and small parts. In some cases a commercial 60 Hz magnetic tape degausser can be used. For a solenoid, the wire size and number of turns are determined by the size of the AC source (voltage and current capacity). Series capacitors are used to tune the coil

10、for resonance. The physical access to the center of the solenoid must be adequate to allow for the rotation of the part on all three of its axes while exposed to the demagnetizing field.At JPL two systems are in use to provide a near zero static magnetic field environment for high level demagnetizat

11、ion. For smaller test items, a double walled mumetal shield can, approximately 60 cm in diameter and 120 cm long, is used. Within the shield can, the AC demagnetizing field is generated by a solenoid. Larger test items are treated in a zero DC environment produced by a triaxial Helmholtz coil system

12、 having a maximum diameter of 3.6 meters. AC fields up to 10 mT are Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-generated by a coil pair 2 meters in diameter contained within the triaxial system. Other demagnetizing solenoids and coils available

13、for use include the following:14 cm i.d. coil42 cm i.d. coil60 cm i.d. solenoid116 cm i.d. HelmholtzMax. Field160 mT 50 mT 24 mT 0.6 mTWire Size 20 AWG 20 AWG 10 AWG 10 AWGWindings 1 2 3 2/coilTurns 1600 1368 426 58/coilOhms/Winding 30.5 25.7 3.1 0.8L/Winding 506 mH 100 mH 57.5 mH 9.6 mHSeries Capac

14、itance 14 uf 80 uf 14 uf Coil Construction 10 mT/amp 2.8 mT/amp 1.2 mT/amp .08 mT/ampWeight 4.5 kg 10 kg 5.3 kg 58 kg1230 volts at 60 Hz Technical Rationale:Ferromagnetic materials, such as the alloys of nickel and cobalt, are of concern because they exhibit hysteresis and have permeabilities which

15、are dependent upon the ambient field strength and temperature. Parts made of these materials exhibit dipole moments which can create disturbance torques and also produce unwanted external magnetic fields.The demagnetization process has either of two objectives: first, to reduce the remanent dipole m

16、oment to its lowest practical level or second, to stabilize the moment with respect to the expected environmental extremes for temperature and field exposure.Because of the potential adverse effects of strong magnetic fields on electronic components, spacecraft assemblies are not exposed to demagnet

17、izing fields in excess of 5 mT (50 Gauss). This level of demagnetizing field is based on the conservative assumption that the spacecraft hardware will not be exposed to magnetizing fields in excess of 1-2 mT.Frequently, in the process of fabrication, parts made of ferromagnetic materials are exposed

18、 to magnetic fields far in excess of 1-2 mT and, in some cases, are received in a saturated state. Ideally, the demagnetization process should remove the saturated remanence by a complete randomization of the domains in the material. However this typically requires a much higher field intensity than

19、 the 5 mT demagnetization field used on completed assemblies and subsystems.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-In those cases where demagnetization is not adequate, the magnetic moment of the part must be stabilized and compensation obta

20、ined through the addition of an equal but oppositely directed dipole moment (a permanent magnet). For this technique to be effective a strong magnetizing field must be applied to make sure that the ferromagnetic part is in a saturated state prior to compensation. This would not be practical to do wi

21、th the part installed on a completed assembly.References:1. “Magnetic Field Restraints For Spacecraft Systems And Subsystems“, N68-11295, Goddard Space Flight Center, Greenbelt, Maryland, February 1967Impact of Non-Practice: Impact of Nonpractice: External magnetic fields produced by spacecraft asse

22、mblies and subsystems can result in the contamination of science magnetometer data and the distortion of plasma wave and charged particle measurements.On Earth orbiting and Jovian missions, the interaction of spacecraft dipole moments and the ambient field can result in disturbance torques which adv

23、ersely affect attitude control systems.Related Practices: N/AAdditional Info: Approval Info: a71 Approval Date: 2000-03-08a71 Approval Name: Eric Raynora71 Approval Organization: QSa71 Approval Phone Number: 202-358-4738Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1