ImageVerifierCode 换一换
格式:PDF , 页数:40 ,大小:1.56MB ,
资源ID:1019587      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1019587.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(REG NASA-TM-X-74018-1977 Low-speed wind tunnel results for a modified 13-percent-thick airfoil.pdf)为本站会员(Iclinic170)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

REG NASA-TM-X-74018-1977 Low-speed wind tunnel results for a modified 13-percent-thick airfoil.pdf

1、r y-e, _ “-,_,w.,mlllW.lk_,J,rC,i NASA TECHNICAL NASATMX-74018MEMORANDUM(,AsA-T_-x-7401_)Low-sp_._.oWIND_u_._. ,79-2496o_ oc ._suz.Ts Fo. A MoDIFIeDI_-P_RC_-T.ZCK_ A:rRVOIL (NASA) 41 p HC AO3/MF A01 CSCL 01A: m- !llclasO!; _ G3/02 26857li I- LOW-SPEEDWIND-TUNNELRESULTS i “_ FORA MODIFIED13-PERCENT-T

2、HICKAIRFOIL _“ RobertJ.McGheeandWilliamD.BeasleyF:IUif:L“lu/ANahonal Aeronautics andSpace Admm_strahonLangley Research CenterHamPtonV, rgmJa23665 :Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Low-SpeedWind-TunnelResultsi:_ for a Modified13-Percent

3、.ThickAirfoilRobertJ. McGheeandWilliamD. Beasley ,LangleyResearchCenteriL._TSUMMARYiAn investigatlonwasconductedin theLangleylow-turbulencepressuretunnelto evaluate_theeffectson.performanceof modifyinga 13-percent-thicklow-speedairf_o_i_l.Theairfoilcontourwas alteredtoreduce theaft upper-surfacepres

4、suregradientand hencedelayboundary-layerseparationat t_picalclimbliftcoefficientsfor lightgeneralaviationairplanesThe testswerei conducted_ata M_ch numberof 0.15or lessover a Reynoldsnumberrangefromaboutl.Ox lO6 to 9.0x lO6. The geometricangleof attackvariedfromabout-lO to 20.i:!,_, The resultsindic

5、atethat themodificationto theairfoilcontourincreasedithemaximumlift-dragratioabout12 percentat a Reynoldsnumberof 2.0x lO6butthatessentiallyno improvementwas obtainedat Reynoldsnumbersof:il_ 4.0 x lO6 and 6.0x lO6. The resultsalso indicatethatthemodificationtotheairfoil decreasedthemaximumliftcoeffi

6、cientabout0.04 throughouttheReynoldsnumberrangetested. The theoreticalviscousanalysismethodI/If! employedprovedto be a valuabletoolin predictingtheairfoilpressuredis!trlbutionsand boundary-layerseparationpoints.INTRODUCTIONResearchon an initialthicknessfamilyof airfoilsdevelopedfor low-, speedgenera

7、laviationapplicationis reportedin referenceI. ResultsofProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-thisresearchshowedthat the13-percent-thickairfoilprovidedthe bestperformancefor this.i_tial thicknessfamilyof airfoils. This airfoil,whichiis desig

8、natedas theNASA LS(1)-0413airfoil,has beenmodifiedin an attempt ,to furtherimprovethe low-speedperformance. The airfoilcontourwas changed!_ to reducetheaft upper-surfacepressuregradientand hencedelay_boundary-layerseparationat typicalclimblift_oefficientsfor light.generalaviationairplanes. This repo

9、rtpresentstheba-_iclow-speedsection_characteristicsof thismodifiedairfoil-andevaluatestheeffectson performanceresulting_i fromthe changeiD airfoilshape.The investigationwas performedin_tbe_Langleylow-turbulencepressurei.: tunnelat Mach numbersof 0.15 or less. The chordReynoldsnumbervaried_ fromabout

10、l.Ox lO6 to 9.0x l_6 andthe geometricalangleof attackvaried_ fromabout-l_ to 20.i,!SYMBOLSValuesare givenin bothSI andU.S. CustomaryUnits. Themeasurements: andcalculationswere made in theU.S.CustomaryUnits.Cp pressurecoefficient,PL “ Pq_c airfoilchord,centimeters(inches). / cc sectionchord-forcecoef

11、ficient, Cp dcd sectionprofile-dragcoefficient,_ d d(_)wakec pointdragcoefficient(ref.5)dcI sectionliftcoefficient,cn cos _ - cc sin_/ . . -JProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-cm sectionpitching-momentcoefficientaboutquarter-chordPoint,s

12、._. cn sectionnormal-forcecoefficient,- Cp diC,: h v.erticaldistancein wake profile,centimeters(inches)i: M free-streamMach numberi:!p staticpressure,N/m2 (lb/f_t2),_“ q dynamicpressure,N/m2 (Ig/ft2)R Reynoldsnumberbasedon free-streamconditionsandairfoilchordS separationpoint_ t airfoilthickness,cen

13、timeters(inches)x airfoilabscissa,centimeters(inches)z airfoilordinate,centimeters(inches)_ zc mean lineordinate,centimeters(inches)i.“i, zt mean thickness,centimeters(inches)i,! _ geometricangleof attack,degreesii Subscripts:! L localpointon airfoil.i max maximumi. _ undisturbedstreamAbbreviations:

14、LS(1) low-speedfirstseries, Mod modifiedProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-IAIRFOILMODIFICATIONThe airfoilcontourwas changedto reducetheaft upper-surfacepressure %gradient(fig.l) and hencereduceboundary-layerseparationat typicalclimbi:_

15、liftcoefficientsfor lightgeneralaviationairplanes(cI = l.Eto 1.2). Themaximumthicknessratio,trailing-edgethickness,anddesign liftcoefficientI = 0.40)of the originalairfoilwere ret_,ned_ Themodificationto thesurfacecontourof airfoilLS(_)_0413isillustratedin figureI. The uppersurfacemodificationwasacc

16、omplishedbyaddingmaterialfromapproximatelythe2,5 percentchordstationfairingwiththe originalairfoilat the40 percentchordstationand removingmaterial_ from thisstationto theairfoiltrailingedge. The lowersurfacemodifica- .: tionwas accomplishedby addingmaterialfromapproximatelythe50 percentchordstationt

17、o theairfoiltrailingedge. The maximumthicknessof the_,: modifiedairfoilwasmovedforwardabou_,-5-_centchord. Figure2 comparesr_ thechangein mean thicknessandcamberdistributionsfor thetwo airfoils:_ and figure3 comparesthechangesin surfaceslopedistributions.Coordinates: for bothairfoilsaregivenin table

18、sI and II.The theoreticalviscousanalysiscomputerprogramof reference2 wasusedto predictthe pressuredistributionsand boundary-layerseparationpointsfor theairfoils. Boundary-layertransitionwas specifiedat x/c = 0.03forthe theoreticalcalculationsto ensurea turbulentboundary-layerdevelop-ment on theairfo

19、ils. Figure4 showsthetheoreticalresultsforboth airfoilsat Reynoldsnumbersof 2.0x lO6 and4.0 x lO6. At a lift coefficientof 0.40and a Reynoldsnumberof 2.0x lO6 (fig.4(a)bothairfoilsare separationIii_ free. At a liftcoefficientof 1.20the theoryindicatesa decreasein upper-4Provided by IHSNot for Resale

20、No reproduction or networking permitted without license from IHS-,-,-surfaceseparationof about0.05cfor themodifiedairfoil(reduced.pressure_ = 1.20)and a Reynoldsnumbergradient). At thi-ssame liftcoefficient(cIof 4.0 x 106 (fig.4(b)a decreasein separationof _nly about0.02cis “shownfor themodifiedairf

21、oil. Basedon thesetheoreticalresults,improve-I. ments in per-f-o_manceforthemodifiedairfoilat climbliftcoefficientswould be exl_ected, particularly at a Reynolds number of_2.0 x lO6. Since the!.theoreticalmethodis only validforattachedor boup.da_y-layerswith smallamountsof flow separation,themaximum

22、liftcoeffi_for the airfoilscould not be determined from the theory,:_ MODELS,APPARATUS,AND PROCEDURE: ModelsTheairfoil-m_delswere constructedutilizinga metalcore aroundwhich plasticfilland two thinlayersof fiberglasswere used to form thecontourillof theairfoils. The modelshadchordsof 61 cm (24in.)an

23、d spansof_.g-I-.44cm (36in.). Themodelswereequippedwith bothupperand lowersurface_ orificeslocated5.08cm (2 in.)off themidspan. The airfoilsurfacewas,:_ sandedin thechordwisedirectionwith number400 dry siliconcarbidepaperto providea smoothaerodynamicfinish. The modelcontouraccuracywasgenerallywithin

24、+.lO mm (.004in.)._i WindTunnel_ TheLangleylJw-turbulencepressuretunnel(ref.3) is a closed-throat,single-returntunnelwhichcan be operatedat stagnationpressuresfrom l toIO atmosphereswith tunnel-emptytestsectionMach numbersup to 0.42 and 0.22,respectively.Themaximumunit Reynoldsnumberis about49 x lO6

25、 permeterProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-F_L _. (15x 106perfoot)at a Mach numberof about0.22. The tunneltestsectionis 91.44cm (3 ft)v,_deby 228.6cm (7.5ft) high.Hydraulicallyactuatedcircularplatesprovidedpositioningandattach-ment fort

26、he two-dimensionalmodel. The platesare I01.60cm (40in.) inil diameter,rotatewith theairfoil,and are flushwith the tunnelwall._Theairfoilendswere attachedto rectangularmodelattachmentplates (fig.5)and the airfoilwas mountedso that thecenterof rotationof thecircularplateswas at 0.25con themodelreferen

27、ce_line.The air gapsat the tunnelil wallsbetweentherectangularplatesand thecircularplateswere sealedwithflexibleslidingmetal seals,shownin figure5.P.FWake SurveyRake,.rA fixedwake surveyrake (fig.6) at themodelmidspanwas cantilever_ mountedfromthe tunnelsidewalland located,onechordlengthbehindthetra

28、ilingedge of the airfoil. The wake rake utilizedtotal-pressuretub_s_0.1524cm (0.060in.)in diameter,and static-pressuretubes,0.3175cm(0.125in.)in diameter. The total-pressuretubeswere flatteredto O.lOl6cm(0.040in.)for 0.6096cm (0.24in.)from thetip of the tube. The static-;i pressuretubeseach hadfourf

29、lushorificesdrilled900apartand located8i_. tubediametersfromthe tipof the tubeand in themeasurementplaneof thetotal-pressuretubes.InstrumentationMeasurementsof the staticpressureson theairfoilsurfacesand thewakerake pressuresweremade by an automaticpressure-scanningsystemutilizingvariable-capacitanc

30、e-typeprecisiontransducers. Basictunnelpressuresweremeasuredwith precisionquartzmanometers. Angleof attackwas measuredwithfProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-_i p1 a calibrateddigitalshaftencoderoperatedby a piniongear and rackattachedto

31、 thecircularmodelattachmentplates. Data were obtainedby a“ high-speed acquisition system and recorded on magnetic tape. :TESTSAND METHODSii Themodifiedairfoilwas testedat Mach numbersof O.15_.oz_lessover ani angle-of-attackrangefrom about-lO to 20. Reynoldsnumberbasedon thei:! x .airfoilchordwas var

32、iecfromaboutl.Ox lO6 to 9.0 !O6 The airfoilwasi testedbothsmooth (naturaltransition)andwith roughnesslocatedon bothupperand lowersurfacesat 0.075c. The roughnesswas sizedfor eecni:_ Reynoldsnumberaccordingto reference4. The roughnessconsistedof granular-type strips 0.127 cm (0.05 in.) wide, sparcely

33、 distributed, and attached to thei .!.: airfoilsurfacewith clearlacquer.The static-pressuremeasurementsat theairfoilsurfacewere r_duced-tot standardpressurecoefficientsandmachineintegratedto obtain-section!: normal-forceand chord-forcecoefficientsand sectionpitching-momentcoeffi-k “cients about the

34、quarter chord. Section profile-drag coefficient-was computedi:_ from thewake-raketotaland staticpressuresby themethod reportedinreference 5.An estimate of the standard low-speed wind-tunnel boundary corrections(ref.6) amountedto a maximumof about2 percentof themeasuredcoefficientsand these correctio

35、ns have not been applied to the data.PRESENTATIONOF RESULTSThe resultsof this investigationhave beenreducedto coefficientformand are presentedin thefollowingfigures:7fProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-I, Figureii.EffectofReynoldsnumbero

36、nsectioncharacteristicsforLS(I)-0413Modairfoil 7_ Comparisonofsectionchaz:acteristicsforLS(I)-0413andi, LS(I)-0413Modairfoils 8_ EffectofReynoldsnumberonchordwisepressuredistributionsF. forLS(1)-0413Modairfoil. 9_i Comparisonof chordwisepressuredistributions-forLS(1)-0413“ andLS(1)-0413Modairfoils l

37、OVariation of .maximumlift coefficient with Reynolds number for_,: LS(I)-0413andLS(I)-0413Modairfoils 11, .ooo.o.i:_ DISCUSSIONi, Theairfoilcontourmodificationproducedthetheoreticallypredicted/_ decreasein aft upper-surfacepressuregradientshownby theexperimentalif pressuredata comparisonforbothairfo

38、ilsin figurelO. Note (fig.lO(a)I_ thatalteringthe shapeof the LS(1)-O413airfoilto reducetheaft upper-i: surfacepressuregradientand retainthe designliftcoefficientof 0.40i, removedthecharacteristicflat-typepressuredistribution.Thus,themodi-fiedairfoilexhibitsa gradualpressurerecoveryof nearlyuniforms

39、lopeover approximately50 percentof theuppersurface. FigurelO(b)showsthedecreasein upper-surfaceboundary-layerseparationat _ = lO and R = 2.0x lO6for themodifiedairfoilas predictedby the viscousanalysismethodofreference2 and discussedunder“AirfoilModification.“Boundary-layer_, separationis indicatedb

40、y the lackof pressuregradienton the uppersurfacenear thetrailingedgeof the airfoils. At o,= lO andR = 4.0x 106,8iProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-F (fig.lO(c)the pressuredistributionsforbothairfoilsindicateess but“ aboutequalamountsof

41、upper-surfacetrailing-edgeseparation. This trendof decreasedseparationat higherReynoldsnumberswas also indicatedby theii, theoreticalmethod. FigurelO(d)comparesthe pressuredata for thetwoi airfoilsat _ _ 16 and R_ 2.0 x IOG. Forthis angleof attackairfoilILS(1)-0413has reachedc and uppersurfacesepara

42、tionextendsfromaboutI Imaxx/c : 0.65to thetrai_ingedge. The LS(I)-0413Mod airfoilis fullystalledLat thisangleof attackand separationextendsfromaboutx/c = 0,25 to theC_ trailingedge This differencein behaviornearstall is attributedto the!_i absenceof the reducedpressure-gradientnear the airfoilmid-ch

43、ordfor the!.modifiedairfoil (Seefig lO(b) This reducedpressure-gradientretards, therapidforwardmovementof upper-surfaceseparationat high anglesof_ attack.The sectioncharacteristicsfor bothairfoilsare comparedi=-figure8forReynoldsnumbersof 2.0 x lO6, 4.0x lO6, and 6.0x lO6. For a Reynoldsnumberof 2.0

44、 x lO6 (fig.8(a)and anglesof attackfromabout40 to 13i_ themodifiedairfoilgeneratesmore liftand lessdragcomparg_totheI originalairfoil. This resultis attributedto lessupper-surfaceseparationii i_ for themodifiedairfoilwith the reducedpressuregradient. Thus,the: lift-curveis more linearat highanglesof

45、 attackcomparedto the lift-curveforthe originalshape An improvementin maximumlift-dragratioof aboutL.12 percentis indicatedfor themodifiedairfoil. However,theangleofattackformaximumliftwas reducedabout30 and hencec decreasedaboutImaxI 0.04 forthemodifiedairfoil The stallcharacteristicsfor bothairfoi

46、ls were similar. At the higherReynoldsnumbers(figs.8(b) and8(c)thecapabilityfor improvementin performanceover that obtainedat R = 2.0x 1069Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-_“ for themodifiedairfoilwas notavailableand thereforenoneoccur

47、red. How-LTever,the sameearlierairfoilstallanddecreaseincI wereexhibited_i m_LXby themodifiedairfo_las was previouslynotedat the lowerReynoldsnumber. _iThe absenceof theimprovementin performancefor themodifiedairfoilat theI_ higherReynoldsnumbersis not surprising,sincethe turbulentboundary-layerii_

48、thicknes_i._decreasedat the highe_Reynoldsnumbersand thereforecan with-standCncreasedpressuregradientsbeforeseparating. FigureII comparesthevaluesof Clmaxfor bothairfoilsfora Reynoldsnumberrangefromaboutt_ 2.0x lO6 to g.o x lO6. Themodifiedairfoilexhibitsa lossin Clmaxof_ about0.04 throughouttheReynoldsnumberrange. The lessnegativevaluesi_i_ of pitching-momentcoefficientsforthe LS(1)-0413Mod airfoilcomparedtotheLS(1)-0413airfoil(fig.8) are associatedwith the reductionin aft_ camberwhichresultedfromalteringthe

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1