ImageVerifierCode 换一换
格式:PDF , 页数:474 ,大小:7.81MB ,
资源ID:1028370      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1028370.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(SAE TA-HB-0009-2013 Reliability Program Handbook (Formerly TechAmerica TA-HB-0009).pdf)为本站会员(orderah291)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

SAE TA-HB-0009-2013 Reliability Program Handbook (Formerly TechAmerica TA-HB-0009).pdf

1、 TechAmerica Engineering Bulletin Reliability Program Handbook TA-HB-0009 May 2013 TA-HB-0009NOTICE TechAmerica Engineering Standards and Publications are designed to serve the public interest by eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and

2、improvement of products, and assisting the purchasers in selecting and obtaining with minimum delay the proper product for their particular needs. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of TechAmerica from manufacturing or selling produ

3、cts not conforming to such Standards and Publications, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than TechAmerica members, whether the standard is to be used either domestically or internationally. Standards and Publications are adopted by

4、 TechAmerica in accordance with the American National Standards Institute (ANSI) patent policy. By such action, TechAmerica does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the Standard or Publication. Technical Publications are distin

5、guished from TechAmerica Standards in that they contain a compilation of engineering data or information useful to the technical community and represent approaches to good engineering practices that are suggested by the formulating committee. This Bulletin is not intended to preclude or discourage o

6、ther approaches that similarly represent good engineering practice, or that may be acceptable to, or have been accepted by, appropriate bodies. Parties who wish to bring other approaches to the attention of the formulating committee to be considered for inclusion in future revisions of this publicat

7、ion are encouraged to do so. It is the intention of the formulating committee to revise and update this publication from time to time as may be occasioned by changes in technology, industry practice, or government regulations, or for other appropriate reasons. (Formulated under the cognizance of the

8、 G41 Reliability Committee.) Published by 2013 TechAmerica Standards SAE JA 1000-1 A.1 System/Product Life-cycle Phase Objective 1 Objective 2 Objective 3 Objective 4 Method: Application Guidelines and Lessons Learned. The Method Application Guidelines describe lessons learned and how to apply the c

9、oncepts of the Method. Method: For More Information. This subsection lists additional industry and/or government resources available for more information. TA-HB-0009 11 2. Activities 2.1. Engineering Process 2.1.1. Purpose The objective of the Engineering Process (EP) is to design and produce a func

10、tional, reliable, and robust system/product. This means that the system/product performs its intended function in the full spectrum of the potential environments and use, it is economical to produce, and it is easy to maintain. From a Reliability Engineering perspective, this goal can be supported b

11、y employing a Failure Mode/Mechanism Management strategy that is based on robust Design for Reliability (DFR) principles. An effective EP comprises a two-step Reliability Process that first proactively identifies a comprehensive set of potential failure modes along with their accelerating mechanisms

12、 and root causes, and, secondly, mitigates them based on a specific prioritization method that accounts for critical functionality from the component level up and the system/product level down. This type of EP will produce not only a functional design, but also a reliable and durable one. An EP that

13、 employs DFR principles during design, development, production, and customer use over the system/product life cycle will minimize waste and potential future re-work, thereby maximizing the total life cycle cost savings. The Inputs, Outputs, Enablers, and Constraints associated with an effective Engi

14、neering Process are shown in Figure 2.1-1. Similarly, Table 2.1-1 shows the inputs and outputs of the EP, but adds a more detailed discussion of the processes and interfaces that take place. Note that the Inputs and Outputs of Table 2.1-1 are worded differently than those in Figure 2.1-1. This is do

15、ne to further characterize these items because of the complexity of the EP. For instance, the two Figure 2.1-1 Inputs for Objective 1, Customer Reliability Requirement and System, Subsystem Component Requirement, are further described as Design Concept Ideal/Intended Functions and Product Boundaries

16、 and Levels of Detail, respectively in Table 2.1-1. TA-HB-0009 12 Figure 2.1-1 IDEF0 for the Engineering Process Modeling Diagram GEIA-STD Sect. 4.5.1.3Engineering ProcessSystem, Subsystem,Component RqmtsCustomer Rel RqmtsLessonsLearnedRFPCost &ScheduleConceptual Rel ModelDesign Rel GoalsRel Assessm

17、ent GapsDetermine RisksAcronymsCOTS Commercial Off The ShelfCust CustomerDFMEA Design Failure Modes Effects AnalysisDFMECA - Design Failure Modes Effects & Criticality AnalysisEnv EnvironmentsFDSC Failure Description Scoring CriteriaFM Failure ModeFPRB Failure Prevention Review BoardGFE Government F

18、urnished EquipmentH/W - HardwareLCC Life Cycle CostMgmt - ManagementNDI Non Developmental ItemOMS/MP Operational Mode Summary/Mission ProfileRCIL Reliability Critical Items ListRel ReliabilityRep - RepresentativeRFP Request for ProposalRPP Reliability Program PlanRqmts RequirementsS/W - SoftwareOMS/

19、MPSimilarHistoryMitigation StrategyRPPGEIA-STD Sect. 5.5.1.3Engineering ProcessFPRBRFPCost &ScheduleFDSCUserEnvRPPPotential Failure Modes & Mechanisms from Rel Boundary Diagrams and Parameter DiagramsAnalyses of Structural, Thermal, Fatigue, Failure Mechanism and Vibration ModelsAnalysis of Impacts

20、of Life Cycle Loads on COTS, NDI & GFEComponent, Subsystem FMs Confirmed by Analysis, Test or Accelerated TestDFMEA/DFECASingle Point FailuresUpdated LCC Loads ModelsRoot Cause Failure MechanismsClosed-Loop Failure Mode Mitigation Updated Rel ModelsPrioritized FM/RCIL (H/W & S/W)Top Down Functional

21、AnalysisGEIA-STD Sect. 6.5.1.3Engineering ProcessFailure Modes Induced by Manufacturing Variation or ErrorsCurrent Assessment & Verification ResultsRFPCost &ScheduleQuality Assembly Supply Chain MgmtControl Manufacturing & Quality VariabilityUpdate Reliability ModelsRoot Cause Failure MechanismsProd

22、uction ParametersFPRBFDSCUserEnvGEIA-STD Sect. 7.5.1.3Engineering ProcessField Data In Actual Operational EnvironmentVerification DataCost &ScheduleRoot Cause Failure MechanismsUpdate LCC Loads ModelsClosed Loop FM MitigationRoot Cause and Corrective ActionMonitoring Failure IncidentsField ServiceRepUserEnvObjective 1: Understand Customer/User Requirements and ConstraintsObjective 2: Design and Redesign for ReliabilityObjective 3: Produce Reliable Systems/ProductsObjective 4: Monitor and Assess user Reliability

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1