ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:814.13KB ,
资源ID:1079222      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1079222.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年春八年级数学下册第17章勾股定理17.2勾股定理的逆定理教案(新版)新人教版.docx)为本站会员(Iclinic170)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019年春八年级数学下册第17章勾股定理17.2勾股定理的逆定理教案(新版)新人教版.docx

1、1第十七章 勾股定理17.2 勾股定理的逆定理教学目标1.理解并能证明勾股定理的逆定理 .2 .理解原命题、逆命题、逆定理的概念 .3 .会认识并判断勾股数,掌握勾股定理的逆定理,并能灵活应用逆定理判定一个三角形是否为直角三角形 . 过程与方法1 .通过对勾股定理的逆定理的探索,经历知识发生、发展和形成的过程 .2 .通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用 .情感、态度与价值观1 .通过用三边之间的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐辩证统一的关系 .2 .在对勾股定理的逆定理的探索中,培养了学生的交流、合作的意识和严谨的

2、学习态度,同时感悟勾股定理和逆定理的应用价值 .重点与难点【重点】 勾股定理的逆定理的应用 .【难点】 勾股定理的逆定理的证明 .教学准备【教师准备】 教学中出示的教学插图和例题 .【学生准备】 三角板、绳子 .新课导入:2学生利用准备好的绳子,以小组为单位动手操作,观察,做出合理的推断 .你能说出勾股定理吗?并指出定理的题设和结论 .学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系 .追问:你能把勾股定理的题设与结论交换得到一个新的命题吗?师生共同得出新的命题,教师指出其为勾股定理的逆命题 .追问:“如果三角形的三边长 a,b,c

3、满足 a2+b2=c2,那么这个三角形是直角三角形 .”能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题 .1 .勾股定理的逆定理(1)归纳猜想提问:如果改变一下三条边的结数,是否还能摆放出同样形状的三角形吗?画图看一看,三角形的三边长分别为 2.5cm,6cm,6.5cm,观察三角形的形状 .再换成4cm,7.5cm,8.5cm 试试看 .三角形的三边具有怎样的关系,才得到上面同样的结论?教师根据学生的思考结果,对第个问题总结归纳,提出猜想:3如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么这个三角形是直角三角形 .下面的三组数分别是一个三角形的三边长 a,b,c

4、.5,12,13;7,24,25;8,15,17 .这三组数都满足 a2+b2=c2吗?分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?学生以小组为单位,按给出的三组数作出三角形,得出结论:这三组数都满足a2+b2=c2;以每组数为边长作出的三角形都是直角三角形 .师生进一步通过实际操作,猜想结论:如果三角形三边长 a,b,c 满足 a2+b2=c2,那么这个三角形是直角三角形 .(2)原命题、逆命题提问:命题 1 和命题 2 的题设和结论分别是什么?学生独立思考回答问题,命题 1 的题设是直角三角形的两直角边长分别为 a,b,斜边长为 c,结论是 a2+b2=c2;命题

5、 2 的题设是三角形的三边长 a,b,c 满足 a2+b2=c2,结论是这个三角形是直角三角形 .教师引导学生分析得出这两个命题的题设和结论正好是相反的 .归纳出互逆命题概念:两个命题的题设和结论正好相反,像这样的两个命题叫做互逆命题,如果其中一个叫原命题,那么另一个就叫做它的逆命题 .提问:请同学们举出一些互逆命题,并思考:原命题正确,它的逆命题是否也正确呢?举例说明 .学生分组讨论合作交流,然后举手发言,教师适时记下一些互逆命题,其中既包含有原命题、逆命题都成立的互逆命题,也包括原命题成立逆命题不成立的互逆命题 .如:对顶角相等和相等的角是对顶角;两直线平行,内错角相等和内错角相等,两直线

6、平行;全等三角形的对应角相等和对应角相等的三角形是全等三角形 .4追问:在大家举出的互逆命题中原命题和逆命题都成立吗?学生举手发言回答,另一学生纠错 .同时教师引导学生明确:任何一个命题都有逆命题 .原命题正确,逆命题不一定正确;原命题不正确,逆命题可能正确 .原命题与逆命题的关系就是命题中题设与结论“互换”的关系 .(3)勾股定理的逆定理的证明如果你认为是正确的,你能证明这个命题“如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么这个三角形是直角三角形”吗?教师引导学生分析命题的题设及结论,让学生独立画出图形,写出已知和求证 .已知:如图所示, ABC 中, AB=c,AC=b,B

7、C=a,且 a2+b2=c2.求证: C=90.追问:要证明 ABC 是直角三角形,只要证明 C=90,由已知能直接证吗?教师引导,如果能证明 ABC 与一个以 a,b 为直角边长的 Rt ABC全等 .那么就证明了 ABC 是直角三角形,为此,可以先构造 Rt ABC,使 AC=b,BC=a, C=90,再让学生小组讨论得出证明思路,证明了猜想的正确性 .教师适时板书出规范的证明过程 .证明:如图所示,作直角三角形 ABC,使 C=90,BC=a,AC=b,由勾股定理得 AB=c, AB=AB,BC=BC,AC=AC, ABC ABC, C= C=90,5 ABC 是直角三角形 .教师在此基

8、础上进一步指出,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们把上面所形成的这个定理叫做勾股定理的逆定理,称这两个定理为互逆定理 .提问:同学们还知道哪些勾股数?请完成以下未完成的勾股数:(1)3,4, ; (2)6,8, ; (3)7,24, ; (4)5,12, ; (5)9,12, . 课堂小结师生共同回顾本节课所学主要内容:(1)已知一个三角形的三边长,利用勾股定理的逆定理来判定这个三角形是不是直角三角形 .(2)一个命题一定有逆命题,一个定理不一定有逆定理 .(3)三个数满足勾股数的两个条件:三个数必须满足较小的两个数的平方和等于最大的一个数的平方;三个数必须都是正整数 .(4)解题时,注意勾股定理与其逆定理的区别 .勾股定理是在直角三角形中运用的,而勾股定理的逆定理是判断一个三角形是不是直角三角形的 .布置作业6【必做题】教材练习第 33 页第 1,2,3 题;教材第 34 页习题 17.2 第 1,2,3,4 题 .【选做题】教材第 34 页习题 17.2 第 7 题 .教学后记:

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1