ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:1.70MB ,
资源ID:1094458      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1094458.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教案2(新版)北师大版.doc)为本站会员(testyield361)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教案2(新版)北师大版.doc

1、11.1 锐角三角函数第 2 课时 正弦与余弦教学目标1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。教学重点与难点 在直角三角形中求出某个锐角的正弦和余弦值。教学过程 一、情景创设1、问题 1:如图,小明沿着某斜坡向上行走了 13m 后,他的相对位置升高了 5m,如果他沿着该斜坡行走了 20m,那么他的相对位置升高了多少?行走了 a m 呢?2、问题 2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值_;它的邻边与斜边的

2、比值_。 (根据是_。 )2、正弦的定义 如图,在 RtABC 中,C90,我们把锐角A 的对边 a 与斜边 c 的比叫做A 的_,记作_,即:sinA_=_.3、余弦的定义 如图,在 RtABC 中,C90,我们把锐角A 的邻边 b 与斜边 c 的比叫做A 的_,记作=_,即:cosA=_=_。 (你能写出B 的正弦、余弦的表达式吗?)试试看._.4、牛刀小试 根据如图中条件,分别求出下列直角三角形中锐角的正弦、余弦值。20m13m25、思考与探索怎样计算任意一个锐角的正弦值和余弦值呢?(1) 如图,当小明沿着 15的斜坡行走了 1 个单位长度时,他的位置升高了约0.26 个单位长度,在水平

3、方向前进了约 0.97 个单位长度。根据正弦、余弦的定义,可以知道:sin150.26,cos150.97(2)你能根据图形求出 sin30、cos30吗?sin75、cos75呢?sin30_,cos30_.sin75_,cos75_.(3)利用计算器我们可以更快、更精确地求得各个锐角的正弦值和余弦值。(4)观察与思考:从 sin15,sin30,sin75的值,你们得到什么结论?_。从 cos15,cos30,cos75的值,你们得到什么结论?_。当锐角 越来越大时,它的正弦值是怎样变化的?余弦值又是怎样变化的?_。6、锐角 A 的正弦、余弦和正切都是A 的_。三、随堂练习1、如图,在 RtABC 中,C90,AC12,BC5,则 sinA_,cosA_,sinB_,cosB_。2、在 RtABC 中,C90,AC1,BC 3,则sinA_,cosB=_,cosA=_,sinB=_.3、如图,在 RtABC 中,C90,BC9a,AC12a,AB15a,tanB=_,cosB=_,sinB=_四、请你谈谈本节课有哪些收获?3五、拓宽和提高已知在ABC 中,a、b、c 分别为A、B、C 的对边,且 a:b:c5:12:13,试求最小角的三角函数值。

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1