1、第二十章 数据的分析,20.2 数据的波动程度,第2课时 用样本方差估计总体方差,第2课时 用样本方差估计总体方差,知 识 目 标,通过理解总体与样本的关系及方差的意义,能用样本方差估计总体方差,并用来解决实际问题,目 标 突 破,目标 利用方差解决实际问题,第2课时 用样本方差估计总体方差,例 教材例2针对训练九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,并把成绩优秀的人数和优秀率分别绘制成如下统计图,第2课时 用样本方差估计总体方差,图2024,第2课时 用样本方差估计总体方差,第2课时 用样本方差估
2、计总体方差,图2027,第2课时 用样本方差估计总体方差,第2课时 用样本方差估计总体方差,【归纳总结】 方差的两个实际应用: (1)衡量一组数据的波动情况:当两组数据的平均数相等或接近时,用方差来考察数据的波动情况,方差小的稳定 (2)用样本方差估计总体方差:考察总体方差时,如果所要考察的总体有许多个体,或考察本身具有破坏性,实际中常用样本方差估计总体方差,总 结 反 思,第2课时 用样本方差估计总体方差,知识点一 使用计算器求方差,方法:(1)使用计算器的统计功能求方差时,不同品牌的计算器的操作步骤有所不同,操作时需要参阅计算器的使用说明书 (2)通常是先按动有关键,使计算器进入统计状态,
3、然后依次输入数据x1,x2,xn,最后按动求方差的功能键,计算器便会求出方差,第2课时 用样本方差估计总体方差,知识点二 用样本来估计总体的统计思想,基本思想:用样本来估计_是统计的基本思想在考察总体方差时,往往总体中包含多个个体,或考察本身带有破坏性,因此,实际中常用样本方差来估计_,总体,总体方差,第2课时 用样本方差估计总体方差,某班拟派一名跳远运动员参加学校运动会,对甲、乙两名跳远运动员进行了8次选拔比赛,他们的成绩(单位:m)如下: 甲:3.68,3.65,3.68,3.69,3.74,3.78,3.68,3.67; 乙:3.60,3.73,3.72,3.61,3.62,3.71,3.70,3.75. 经预测,跳3.70 m可获得冠军,你认为应派谁去? 解:经计算s甲2s乙2,所以应派甲去 此题的解答是否正确?若不正确,请指出错误你认为应派谁去?,第2课时 用样本方差估计总体方差,答案 不正确 s甲2s乙2只能说明甲的成绩稳定认为应派方差小的甲去的错误原因是没有结合实际情况,思路狭窄 因为经预测,跳3.70 m可获得冠军,8次选拔赛中,甲只有2次超过3.70 m,而乙有5次超过或达到3.70 m,所以应派乙去,