ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:1.18MB ,
资源ID:1100444      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1100444.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年春八年级数学下册第6章平行四边形复习课课件(新版)北师大版.ppt)为本站会员(progressking105)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019年春八年级数学下册第6章平行四边形复习课课件(新版)北师大版.ppt

1、,BS八(下) 教学课件,第六章 平行四边形,复习课,几 何 语 言,文字叙述,对边平行,对边相等,对角相等, AD=BC ,AB=DC., 四边形ABCD是平行四边形,, A=C, B=D., 四边形ABCD是平行四边形,,对角线互 相平分, 四边形ABCD是平行四边形,, OA=OC,OB=OD., 四边形ABCD是平行四边形,, ADBC ,ABDC.,平行四边形是 中心对称图形.,知识梳理,O,几 何 语 言,文字叙述,两组对边相等,一组对边平行且相等,四边形ABCD是平行四边形., AD=BC ,AB=DC, 四边形ABCD是平行四边形., AB=DC,ABDC,对角线互相平分, 四

2、边形ABCD是平行四边形., OA=OC,OB=OD,两组对边分别平行(定义), 四边形ABCD是平行四边形., ADBC ,ABDC,平行线之间的距离处处相等,知识梳理,1.三角形的中位线定义:连结三角形两边中点的线段叫做三角形的中位线.,2.三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.,用符号语言表示,DE是ABC的中位线,DEBC,知识梳理,四、多边形的内角和与外角和,多边形的内角和等于(n2) 180 ,多边形的外角和等于 360 ,正多边形每个内角的度数是,正多边形每个外角的度数是,知识梳理,如图,在平行四边形ABCD中,下列结论中错误的是( ) A1=2

3、BBAD=BCDCAB=CD DAC=BC,【解析】A.四边形ABCD是平行四边形, ABCD,1=2,故A正确; B.四边形ABCD是平行四边形, BAD=BCD,故B正确; C.四边形ABCD是平行四边形, AB=CD,故C正确;,D,考点讲练,例1,解题技巧:主要考查了平行四边形的性质,关键是掌握平行四边形对边相等且平行,对角相等.,考点讲练,练习1.如图,已知ABCD中,AE平分BAD,CF平分BCD,分别交BC、AD于E、F求证:AF=EC,证明:四边形ABCD是平行四边形, B=D,AD=BC,AB=CD,BAD=BCD, (平行四边形的对角相等,对边相等) AE平分BAD,CF平

4、分BCD, EAB= BAD,FCD= BCD,EAB= FCD, 在ABE和CDF中BD ABCD EABFCD ABECDF,BE=DF AD=BC AF=EC,考点讲练,如图,在ABCD中,ODA=90,AC=10cm,BD=6cm,则AD的长为( ) A4cm B5cm C6cm D8cm,【解析】四边形ABCD是平行四边形, AC=10cm,BD=6cm OA=OC= AC=5cm,OB=OD= BD=3cm, ODA=90, AD= =4cm,A,考点讲练,例2,解题技巧:主要考查了平行四边形的性质,平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.,考点讲练,【解析】在A

5、BCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm, AO=CO=12cm,BO=19cm,AD=BC=28cm, BOC的周长是:BO+CO+BC=12+19+28=51(cm),练习2.如图,在ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则BOC的周长是( ) A45cm B59cm C62cm D90cm,B,考点讲练,如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( ) AOA=OC,OB=OD BBAD=BCD,ABCD CADBC,AD=BC DAB=CD,AO=CO,D

6、,考点讲练,例3,解题技巧:平行四边形的判定方法: 两组对边分别平行的四边形是平行四边形; 两组对边分别相等的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形; 对角线互相平分的四边形是平行四边形; 一组对边平行且相等的四边形是平行四边形.,考点讲练,练习3.如图,点D、C在BF上,ACDE,A=E,BD=CF, (1)求证:AB=EF,(1)证明:ACDE, ACD=EDF, BD=CF,BD+DC=CF+DC, 即BC=DF, 又A=E,ABCEFD(AAS), AB=EF;,考点讲练,(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由,(2)猜想:四边形ABEF为平行四

7、边形, 理由如下:由(1)知ABCEFD, B=F,ABEF, 又AB=EF, 四边形ABEF为平行四边形.(一组对边平行且相等的四边形是平行四边形),考点讲练,如图,已知E、F分别是ABCD的边BC、AD上的点,且BE=DF求证:四边形AECF是平行四边形,证明:四边形ABCD是平行四边形, ADBC,且AD=BC,(平行四边形的对边平行且相等) AFEC, BE=DF, AF=EC, 四边形AECF是平行四边形,考点讲练,例4,解题技巧:本题考查了平行四边形的性质和判定的应用,注意平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.,考点讲练,练习4.如图,在四边形ABC

8、D中,对角线AC、BD相交于点O,E、F分别是BO、OD的中点,且四边形AECF是平行四边形,试判断四边形ABCD是不是平行四边形,并说明理由,考点讲练,证明:平行四边形AECF, OA=OC,OE=OF, (平行四边形的对角线互相平分) E、F分别是BO、OD的中点, 2OE=2OF,即OB=OC, OA=OC, 四边形ABCD是平行四边形. (对角线互相平分的四边形是平行四边形),考点讲练,已知:AD是ABC的中线,E是AD的中点,F是BE的延长线与AC的交点。求证: .,证明:过点D作DHBF,交AC于点H. AD是ABC的中线D是BC的中点CHHF CFE是AD的中点,EFDHAFFH

9、.AF FC,A,B,C,D,E,F,H,考点讲练,例5,练习5.若三角形的三条中位线之比为 6 : 5 : 4 ,三角 形的周长为 60 cm,那么该三角形中最长边的边长 为;,解析:设三角形的三条中位线之长分别为6x,5x,4x, 则三角形的三条边长之长分别为12x,10x,8x, 依题意有 12x10x8x60,,解得 x2.,所以,最长边12x24(cm).,24 cm,考点讲练,已知一个多边形的每个外角都是其相邻内角度数的 ,求这个多边形的边数.,解: 设此多边形的外角的度数为x,则内角的度数为4x, 则x+4x=180,解得 x=36. 边数n=36036=10.,考点讲练,例6,

10、练习6.一个正多边形的每一个内角都等于120 ,则其边数是 .,6,【解析】 因为该多边形的每一个内角都等于120度,所以它的每一个外角都等于60 .所以边数是6.,解题技巧:在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其在求边数的问题中,常常利用定理列出方程,进而再求得边数.,考点讲练,平 行 四 边 形,性质,对边平行且相等,对角相等,邻角互补,对角线互相平分,判别,两组对边分别平行的,两组对边分别相等的,一组对边平行且相等的,对角线互相平分的,四 边 形,课堂小结,三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.,多边形的内角和与外角和,内角和计算公式,(n-2) 180 (n 3的整数),外角和,多边形的外角和等于360 特别注意:与边数无关。,正多 边形,内角= ,外角=,课堂小结,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1