ImageVerifierCode 换一换
格式:PPTX , 页数:25 ,大小:2.73MB ,
资源ID:1103123      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1103123.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((江苏专用)2019高考数学二轮复习专题一三角函数和平面向量第3讲平面向量课件.pptx)为本站会员(bonesoil321)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

(江苏专用)2019高考数学二轮复习专题一三角函数和平面向量第3讲平面向量课件.pptx

1、第3讲 平面向量,第3讲 平面向量,1.如图,在66的方格纸中,若起点和终点均在格点的向量a, b,c满足c=xa+yb(x, yR),则x2+y2= .,答案 5,解析 a=(1,2),b=(2,-1),c=(3,4),由c=xa+yb得 解得 则x2+y2=5.,2.若a,b,c都是单位向量,且ab,则(a+b+2c)c的最大值为 .,答案 2+,解析 由题意可设a=(1,0),b=(0,1),c=(cos ,sin ),则(a+b+2c)c=(1+2cos ,1+2 sin )(cos ,sin )=(1+2cos )cos +(1+2sin )sin =cos +sin +2= sin

2、 +22+ ,当且仅当= +2k,kZ时取等号,故(a+b+2c)c的最大值为2+.,3.若向量a=(cos ,sin ),b=(cos ,sin ),且|a+b|2ab,则cos(-)= .,答案 1,解析 由|a+b|2ab两边平方得|a|2+2ab+|b|24(ab)2.又ab=cos(-)0,所 以4cos2(-)-2cos(-)-20,2cos(-)+1cos(-)-10,则cos(-)1.又-1 cos(-)1,则cos(-)=1.,4.已知向量e1,e2是夹角为 的两个单位向量,向量a=e1-e2,b=ke1+e2,若ab=0,则 k的值为 .,答案 1,解析 |e1|=|e2|

3、=1,e1e2=- ,ab=(e1-e2)(ke1+e2)=k|e1|2+(1-k)e1e2-|e2|2=k- (1-k)-1=0, 解得k=1.,题型一 平面向量的线性运算,例1 设 =(2,-1), =(3,0), =(m,3). (1)当m=8时,将 用 和 表示; (2)若A、B、C三点能构成三角形,求实数m应满足的条件.,【方法归纳】 (1)向量的线性运算有加法、减法、数乘,运算方法有几何法 (三角形法则和平行四边形法则)和代数法(坐标法);(2)向量共线定理:非零向 量a=(x1,y1),b=(x2,y2),aba=bx1y2-x2y1=0.,1-1 (2018江苏南通中学高三考前

4、冲刺)如图,在梯形ABCD中, ABCD, AB=3 CD,点E是B,C的中点.若 =x +y ,其中x,yR,则x+y的值为 .,答案,解析 2 = + =3 + =3 - + =4 -3 ,则 = + ,则x+y= + = .,题型二 平面向量的数量积,例2 (1)(2018江苏盐城模拟)如图,在AB1B8中,已知B1AB8= ,AB1=6,AB8= 4,点B2,B3,B4,B5,B6,B7分别为边B1B8的7等分点,则当i+j=9(1i8)时, 的 最大值为 .,(2)(2018江苏扬州调研)如图,已知AC=2,B为AC的中点,分别以AB,AC为直径 在AC同侧作半圆,M,N分别为两半圆

5、上的动点(不含端点A,B,C)且BMBN,则 的最大值为 .,答案 (1) (2),解析 (1)在AB1B8中,B1AB8= ,AB1=6,AB8=4,由余弦定理可得B1B8=2 .取 B1B8的中点D,则| |= = = , = + - =| |2-| |2=19-| |2,当 最大时,| |2最小,则i=4或5,此时|2= 2= , 则 的最大值为19- = . (2)由题意可得BMBN,AMB=90,则AMBN.因为AC=2,B为AC的中点,所,以BN=BC=BA=1. 设NBC=MAB=, ,则 = ( - )= - =| |-| | |cos =| |-| |2=- + ,当| |=

6、 时取等 号, 故 的最大值是 .,【方法归纳】 数量积运算一般有两种解法,即基底法和坐标法,一般选择长 度、夹角已知的向量为基底,将其余向量都用基底表示;特殊图形中的数量积 也可建立适当的平面直角坐标系,利用向量的坐标运算求解,要根据条件灵活 选择方法.,2-1 (1)(2018江苏南京模拟)在ABC中,AB=3,AC=2,D为边BC上一点.若 =5, =- ,则 的值为 . (2)(2018苏锡常镇四市调研)如图,扇形AOB的圆心角为90,半径为1,点P是圆 弧AB上的动点,作点P关于弦AB的对称点Q,则 的取值范围为 .,答案 (1)-3 (2) -1,1,解析 (1)因为D为边BC上一

7、点,所以 =x +y ,x+y=1,x,y0,则 =(x +y )=9x+y =5, = (x +y )=x +4y=- .联立解得 =-3或 , 当 = 时不满足x,y0,舍去,故 =-3. (2)以点O为坐标原点,OA所在直线为x轴,OB所在直线为y轴建立平面直角坐 标系,则A(1,0),B(0,1).设P(cos ,sin ), ,直线AB的方程为x+y-1=0,则点 P关于直线AB的对称点Q(1-sin ,1-cos ),则 =cos (1-sin )+sin (1-cos,)=sin +cos -2sin cos ,令t=sin +cos = sin 1, ,则 =- t2+t+1

8、-1,1.,题型三 平面向量与三角函数的综合问题,例3 (2018江苏南通调研)在平面直角坐标系xOy中,设向量a=(cos ,sin ),b= (-sin ,cos ),c= . (1)若|a+b|=|c|,求sin(-)的值; (2)设= ,0,且a(b+c),求的值.,解析 (1)因为a=(cos ,sin ),b=(-sin ,cos ),c= ,所以|a|=|b|=|c|=1,且 ab=-cos sin +sin cos =sin(-). 因为|a+b|=|c|,所以|a+b|2=c2,即a2+2ab+b2=1, 所以1+2sin(-)+1=1,即sin(-)=- . (2)因为=

9、,所以a= . 依题意,b+c= .,因为a(b+c),所以- - =0. 化简得 sin - cos = ,所以sin = .因为0,所以- - . 所以- = ,即= .,【方法归纳】 解决三角函数与平面向量综合问题的关键:一是巧“化简”, 即灵活运用诱导公式、同角三角函数的基本关系式、倍角公式、辅助角公 式等对三角函数式进行化简;二是会“转化”,把以向量共线、向量垂直形式 出现的条件还原,转化为“对应坐标乘积之间的关系”.这类问题的落脚点是 三角函数的化简与求值.,3-1 已知a=(cos ,sin ),b=(cos x,sin x),c=(sin x+2sin ,cos x+2cos

10、),其中0x. (1)若= ,求函数f(x)=bc的最小值及相应的x值; (2)若a与b的夹角为 ,且ac,求tan 2的值.,解析 (1)由已知得, f(x)=bc=cos xsin x+2cos xsin +sin xcos x+2sin x cos =2 sin xcos x+ (sin x+cos x).,令t=sin x+cos x(0x),则2sin xcos x=t2-1,且-1t .则f(x)可化为函数y=t2+ t-1= - ,-1t . 当t=- 时, f(x)取得最小值- ,此时x= . (2)因为a与b的夹角为 , 所以cos = =cos cos x+sin sin x=cos(x-). 因为0x,所以0x-,所以x-= . 因为ac,所以cos (sin x+2sin )+sin (cos x+2cos )=0.,所以sin(x+)+2sin 2=0,则sin +2sin 2=0. 所以 sin 2+ cos 2=0,所以tan 2=- .,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1