ImageVerifierCode 换一换
格式:PPTX , 页数:29 ,大小:2.60MB ,
资源ID:1103131      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1103131.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((江苏专用)2019高考数学二轮复习专题五函数与导数第14讲函数的零点问题课件.pptx)为本站会员(visitstep340)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

(江苏专用)2019高考数学二轮复习专题五函数与导数第14讲函数的零点问题课件.pptx

1、第14讲 函数的零点问题,第14讲 函数的零点问题 1.已知函数f(x)=ex-2x+a有零点,则a的取值范围是 .,答案,2.函数f(x)= 的零点个数是 .,答案 2,解析 当x0时,由f(x)=x2-2=0,解得x=- ;当x0时,f(x)=2x-6+ln x,其零点个数 即为方程2x-6+ln x=0,x0的实根个数,也即为函数y=6-2x,y=ln x,x0图象的交 点个数,由函数图象可知f(x)=2x-6+ln x在(0,+)上有1个零点,故函数f(x)共有 2个零点.,3.已知函数f(x)= 若函数g(x)=|f(x)|-3x+b有三个零点,则实数b的取 值范围为 .,答案 (-

2、,-6),解析 函数g(x)= -3x+b有三个零点,即y= ,y=3x-b的图象有三个不同 的交点,在同一坐标系中作出两函数的图象如图,当直线y=3x-b与f(x)=4x-x2,x 0,4相切时,由f (x)=4-2x=3,x= ,即切点为 ,此时-b= ,由图可得0-b6,即b-6时,两个 函数图象有3个交点,综上可得,实数b的取值范围是(-,-6) .,4.若函数f(x)=x2-mcos x+m2+3m-8有唯一零点,则满足条件的实数m所组成的集 合为 .,答案 2,解析 因为f(-x)=f(x),所以f(x)是R上的偶函数,所以函数f(x)的唯一零点只能 是0,即f(0)=m2+2m-

3、8=0,解得m=2或-4.当m=2时, f(x)=x2-2cos x+2, f (x)=2x+2sin x0,x(0,+),则f(x)在x(0,+)上递增,此时f(x)有唯一零点x=0;当m=-4时, f (x)=x2+4cos x-4,有3个零点,不适合,舍去,故实数m的取值集合为2.,题型一 确定函数的零点个数,例1 (2018高考数学模拟试卷(1)设kR,函数f(x)=ln x+x2-kx-1,求: (1)k=1时,不等式f(x)-1的解集; (2)函数f(x)的单调递增区间; (3)函数f(x)在定义域内的零点个数.,解析 (1)k=1时,不等式f(x)-1,即ln x+x2-x0,设

4、g(x)=ln x+x2-x,因为g(x)= +2x- 1= 0在定义域(0,+)上恒成立,所以g(x)在(0,+)上单调递增,又g (1)=0,所以f(x)-1的解集为(1,+). (2)f (x)= +2x-k= (x0), 由f (x)0得2x2-kx+10(*).,(i)当=k2-80,即-2 k2 时,(*)在R上恒成立,所以f(x)的单调递增区间 为(0,+).,(ii)当k2 时,=k2-80,此时方程2x2-kx+1=0的相异实根分别为x1= , x2= ,因为 所以0x1x2,所以f (x)0的解集为 , 故函数f(x)的单调递增区间为 和 .,(iii)当k2 时,函数f(

5、x)的单调递增区间为 和 ; 当k2 时,函数f(x)的单调递增区间为(0,+). (3)据(2)知当k2 时,函数f(x)在定义域(0,+)上单调递增,令,得x ,取m=max ,则当xm时, f(x)x2-kx- 10.设02 时, f(x)在(0,x1)和(x2,+)上递增,在(x1,x2)上递减,其中2x1-kx1+1=0,2 x2-kx2+1=0,则f(x1)=ln x1+ -kx1-1=ln x1+ -(2 +1)-1=ln x1- -2. 下面先证明ln x0):设h(x)=ln x-x,由h(x)= 0得00),即 ln x0).因 此,f(x1)m时, f(x)0, f(x)

6、的图象连续不间断,所以f(x)在区间(x2,+)上有 且仅有一个零点. 综上所述,函数f(x)在定义域内有且仅有一个零点.,【方法归纳】 确定函数y=f(x)零点个数的方法:(1)解方程f(x)=0,方程有几个 解函数就有几个零点;(2)画出函数y=f(x)的图象,确定与x轴的交点个数;(3)转 化为两个函数图象的交点个数.,1-1 (2017江苏,14,5分)设f(x)是定义在R上且周期为1的函数,在区间0,1)上, f (x)= 其中集合D= ,则方程f(x)-lg x=0的解的个数是.,答案 8,解析 由于f(x)0,1),则只需考虑1x10的情况, 在此范围内,xQ且xZ时,设x= ,

7、p,qN*,p2且p,q互质,若lg xQ,则由lg x0,1),可设lg x= ,m,nN*,m2且m,n互质,因此1 = ,则10n= ,此时 等号左边为整数,等号右边为非整数,矛盾.因此lg xQ, 因此lg x不可能与每个周期内xD对应的部分相等, 只需考虑lg x与每个周期内xD对应的部分的交点. 画出函数草图,图中交点除(1,0)外,其他交点的横坐标均为无理数,且x=1处(lg,x)= = 1,则在x=1附近仅有一个交点,因此方程解的个数为8.,题型二 已知函数的零点个数,求参数的取值范围,例2 (2018江苏)若函数f(x)=2x3-ax2+1(aR)在(0,+)内有且只有一个零

8、点, 则f(x)在-1,1上的最大值与最小值的和为 .,答案 -3,解析 f(x)=2x3-ax2+1,f (x)=6x2-2ax=2x(3x-a). 若a0,则x0时, f (x)0,f(x)在(0,+)上为增函数,又f(0)=1,f(x)在(0,+) 上没有零点,a0. 当0 时, f (x)0, f(x)为增函数,x0时, f (x)有极小值,为f =- +1. f(x)在(0,+)内有且只有一个零点, f =0,a=3.,f(x)=2x3-3x2+1,则f (x)=6x(x-1).,f(x)在-1,1上的最大值为1,最小值为-4. 最大值与最小值的和为-3.,【方法归纳】 已知函数零点

9、个数,求参数的取值范围一般利用等价转化、 数形结合等思想,将问题转化为动直线与定曲线的交点个数问题.,2-1 (2018江苏盐城中学高三阶段检测)若函数f(x)= 在其定义域 上恰有两个零点,则实数a的取值范围为 .,答案 (-,0,解析 当x0时, f(x)=x+2x单调递增,且f(-1)=- 0,函数有1个零点, 所以当x0时f(x)也有1个零点,当x0时, f (x)=a- ,当a0时, f (x)1时, f(x)0时, f (x)=0, x= ,x , f (x)0, f(x)递增,则当f =1+ln a =0,a= 时,函数有1个零点,综上可得,实数a的取值范围是(-,0 .,2-2

10、 (2018南通高三第二次调研)设函数f(x)= (其中e为自然 对数的底数)有3个不同的零点,则实数m的取值范围是 .,答案 (1,+),解析 若e-x- =0得x=ln 20,则函数f(x)有3个不同的零点,即方程x3-3mx-2=0,x 0有两个不等实根,x=0时方程不成立,则3m=x2- ,x 0,g(x)递增,则3mg(-1)=3,m1.,题型三 函数的零点存在问题,例3 (2018高考数学模拟)设a0,e是自然对数的底数,已知函数f(x)= 有零点,且所有零点的和不大于6,则a的取值范围为 .,答案 (-,0)4,6,解析 a0时, f(x)在(0,+)上单调递增,因为f(1)=1

11、,所以f(x)在(0,+)上有一个小于1 的零点.因此满足条件.,a0时,00,所以f(x)在(-,0上没 有零点.又因为=a2-4a0,故f(x)在(0,+)上也没有零点.因此不满足题意.,2)1 0,所以f(x)在(-,0)上没有零点.又因为=a2-4a4时, f(x)在(-,0上没有零点,在(0,+)上有两个不相等的零点,且和为a, 故满足题意的范围是4a6. 综上所述,a的取值范围为(-,0)4,6.,【方法归纳】 (1)函数有零点即方程有解问题,一般解题策略是等价转化、 数形结合思想的灵活应用,利用等价转化思想将问题转化为两个函数图象有 交点时斜率的范围问题,或者转化为一个新的函数在某一区间上的值域.(2) 函数y=f(x)的零点、方程f(x)=0的根、函数y=f(x)的图象与x轴的交点横坐标 是同一问题的三种不同说法.,3-1 若函数f(x)=4x-2x-a,x-1,1有零点,则实数a的取值范围是 .,答案,解析 函数f(x)=4x-2x-a,x-1,1有零点,即方程a=4x-2x,x-1,1有解,则a的取 值范围就是函数y=4x-2x,x-1,1的值域,令2x=t,t ,y=t2-t= - ,t,值域是 ,即为a的取值范围.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1