ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:4.71MB ,
资源ID:1111814      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1111814.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019版八年级数学下册第一章三角形的证明3线段的垂直平分线(第1课时)教学课件(新版)北师大版.ppt)为本站会员(rimleave225)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019版八年级数学下册第一章三角形的证明3线段的垂直平分线(第1课时)教学课件(新版)北师大版.ppt

1、第1课时,3 线段的垂直平分线,1.能够运用公理和所学的定理证明线段垂直平分线的性质和判定定理. 2.能用尺规作已知线段的垂直平分线.,等腰三角形顶角平分线有哪些性质?,垂直于底边,并且平分底边,AD所在的直线即线段BC的垂直平分线,C,如图,A,B表示两个仓库,要在A,B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?,码头应建在线段AB的垂直平分线上一点.,线段垂直平分线上的点到这条线段两个端点的距离相等.,已知:如图,AC=BC,MNAB,P是MN上任意一点. 求证:PA=PB.,证明:MNAB, PCA=PCB=90. AC=BC,PC=PC, PCAPCB(S

2、AS); PA=PB(全等三角形的对应边相等),性质定理:线段垂直平分线上的点到这条线段的两个端点的距离相等,温馨提示:这个结论是经常用来证明两条线段相等的根据之一.,【结论】,如图:直线MN是线段AB的垂直平分线,点C为垂足,请问在图形中哪些线段相等?,【想一想】,提示:PA=PB,AC=BC,你能写出下面这个定理的逆命题吗?,如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上,即到线段两个端点的距离相等的点在这条线段的垂直平分线上,当我们写出逆命题时,就想到判断它的真假如果真,则需证明它;如果假,则需用反例说明,性质定理:线段垂直平分线上的点到这条线段两个端点的距离相

3、等,已知:线段AB,点P是平面内一点且PA=PB 求证:P点在AB的垂直平分线上 方法一:过点P作已知线段AB的垂线PC,PCA=PCB =90, PA=PB,PC=PC, RtPACRtPBC(HL) AC=BC,PCAB, 即P点在AB的垂直平分线上,性质定理的逆命题:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,方法二: 取AB的中点C,过点P,C作直线PC,AP=BP,PC=PC.AC=CB,APCBPC(SSS)PCA=PCB(全等三角形的对应角相等)又PCA+PCB=180,PCA=PCB=90,即PCAB,P点在AB的垂直平分线上,B,P,A,C,方法三: 过P点作A

4、PB的角平分线交AB于点C AP=BP,APC=BPC,PC=PC, APCBPC(SAS) AC=BC,PCA=PCB, 又PCA+PCB=180, PCA=PCB=90, P点在线段AB的垂直平分线上,B,P,A,C,PA=PB(已知), 点P在AB的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).,温馨提示:这个结论是经常用来证明点在直线上(或直线经过某一点)的根据之一.,判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.,【结论】,【例】做一做:用尺规作线段的垂直平分线.,作法:1.分别以点A和B为圆心,以大于AB的长为半径作弧,两弧交于点C

5、和点D,2.作直线CD,直线CD就是线段AB的垂直平分线,请你说明CD为什么是AB的垂直平分线,并与同伴进行交流,已知:线段AB,如图. 求作:线段AB的垂直平分线,【例题】,1.如图,已知AB是线段CD的垂直平分线,E是AB上 的一点,如果EC=7cm,那么ED= cm;如果 ECD=60,那么EDC .,老师期望: 你能说出填空结果的根据.,7,60,2.已知直线和直线上一点P,利用尺规作直线的垂线,使它经过点P.,已知:直线l和l上一点P 求作:PC l 作法:1.以点P为圆心,以任意长为半径作弧,与直线l相交于点A和点B 2.作线段AB的垂直平分线PC 直线PC就是所求的垂线,3如图,求作一点P,使PA=PB,PC=PD,A,B,C,D,P,P点即为所求作的点,4.已知:如图,AB=AC,BD=CD,P是AD上一点 求证:PB=PC,【证明】连接BC, AB=AC,BD=CD, 点A,D在线段BC的垂直平分线上; 直线AD垂直平分线段BC, PB=PC,1.性质定理: 线段垂直平分线上的点到这条线段两个端点的距离相等 2.判定定理: 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上 3.用尺规作线段的垂直平分线,智慧的可靠标志就是能够在平凡中发现奇迹。 爱默生,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1