1、第4课时 导数与函数的零点,考点一 判断零点的个数,【例1】 (2019合肥质检)已知二次函数f(x)的最小值为4,且关于x的不等式f(x)0的解集为x|1x3,xR.(1)求函数f(x)的解析式;,解 (1)f(x)是二次函数,且关于x的不等式f(x)0的解集为x|1x3,xR, 设f(x)a(x1)(x3)ax22ax3a,且a0. f(x)minf(1)4a4,a1. 故函数f(x)的解析式为f(x)x22x3.,令g(x)0,得x11,x23.,当x变化时,g(x),g(x)的取值变化情况如下表:,当0x3时,g(x)g(1)40,,又因为g(x)在(3,)上单调递增, 因而g(x)在
2、(3,)上只有1个零点, 故g(x)仅有1个零点.,规律方法 利用导数确定函数零点或方程根个数的常用方法 (1)构建函数g(x)(要求g(x)易求,g(x)0可解),转化确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数. (2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.,(1)证明:函数h(x)f(x)g(x)在区间(1,2)上有零点; (2)求方程f(x)g(x)的根的个数,
3、并说明理由.,所以函数h(x)在区间(1,2)上有零点.,而h(0)0,则x0为h(x)的一个零点. 又h(x)在(1,2)内有零点,,因此h(x)在0,)上至少有两个零点.,当x(0,)时,(x)0,因此(x)在(0,)上单调递增, 易知(x)在(0,)内至多有一个零点, 即h(x)在0,)内至多有两个零点, 则h(x)在0,)上有且只有两个零点, 所以方程f(x)g(x)的根的个数为2.,考点二 已知函数零点个数求参数的取值范围 【例2】 函数f(x)axxln x在x1处取得极值.,(1)求f(x)的单调区间; (2)若yf(x)m1在定义域内有两个不同的零点,求实数m的取值范围.,解
4、(1)函数f(x)axxln x的定义域为(0,). f(x)aln x1,因为f(1)a10,解得a1, 当a1时,f(x)xxln x,即f(x)ln x,令f(x)0,解得x1; 令f(x)0,解得0x1. 所以f(x)在x1处取得极小值,f(x)的单调递增区间为(1,),单调递减区间为(0,1).,(2)yf(x)m1在(0,)内有两个不同的零点,可转化为yf(x)与ym1图象有两个不同的交点. 由(1)知,f(x)在(0,1)上单调递减,在(1,)上单调递增,f(x)minf(1)1,,由题意得,m11, 即m2, 当0e时,f(x)0. 当x0且x0时,f(x)0; 当x时,显然f
5、(x). 由图象可知,m10,即m1, 由可得2m1. 所以m的取值范围是(2,1).,规律方法 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.,解 (1)由题意知,函数f(x)的定义域为R, 又f(0)1a2,得a1, 所以f(x)exx1,求导得f(x)ex1. 易知f(x)在2,0上单调递减,在0,1上单调递增, 所以当x0时,f(x)在2,1上取得最小值2.,(2)由(1)知f(x)exa,由于ex0, 当a0时,f(x)0
6、,f(x)在R上是增函数, 当x1时,f(x)exa(x1)0;,【训练2】 已知函数f(x)exaxa(aR且a0).,(1)若f(0)2,求实数a的值,并求此时f(x)在2,1上的最小值; (2)若函数f(x)不存在零点,求实数a的取值范围.,所以函数f(x)存在零点,不满足题意. 当a0,f(x)单调递增, 所以当xln(a)时,f(x)取最小值. 函数f(x)不存在零点,等价于f(ln(a)eln(a)aln(a)a2aaln(a)0,解得e2a0. 综上所述,所求实数a的取值范围是(e2,0).,考点三 函数零点的综合问题 【例3】 设函数f(x)e2xaln x.,(1)讨论f(x
7、)的导函数f(x)零点的个数;,当a0时,f(x)0,f(x)没有零点;,所以f(x)在(0,)上单调递增.,(2)证明 由(1),可设f(x)在(0,)上的唯一零点为x0, 当x(0,x0)时,f(x)0. 故f(x)在(0,x0)上单调递减,在(x0,)上单调递增, 所以当xx0时,f(x)取得最小值,最小值为f(x0).,故当a0时,f(x)存在唯一零点.,规律方法 1.在(1)中,当a0时,f(x)在(0,)上单调递增,从而f(x)在(0,)上至多有一个零点,问题的关键是找到b,使f(b)0.,【训练3】 (2018东北三省四校联考)已知函数f(x)ln xxm(m2,m为常数).,当
8、x(0,1)时,f(x)0,所以yf(x)在(0,1)递增; 当x(1,)时,f(x)0,所以yf(x)在(1,)上递减.,(2)证明 由(1)知x1,x2满足ln xxm0,且01, ln x1x1mln x2x2m0, 由题意可知ln x2x2m2ln 22.,思维升华 1.解决函数yf(x)的零点问题,可通过求导判断函数图象的位置、形状和发展趋势,观察图象与x轴的位置关系,利用数形结合的思想方法判断函数的零点是否存在及零点的个数等. 2.通过等价变形,可将“函数F(x)f(x)g(x)的零点”与“方程f(x)g(x)的解”问题相互转化. 易错防范函数yf(x)在某一区间(a,b)上存在零点,必要时要由函数零点存在定理作为保证.,
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1