ImageVerifierCode 换一换
格式:PPTX , 页数:38 ,大小:1.88MB ,
资源ID:1111940      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1111940.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版高考数学新设计大一轮复习第二章函数概念与基本初等函数Ⅰ第3节函数的奇偶性与周期性课件理新人教A版.pptx)为本站会员(赵齐羽)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2020版高考数学新设计大一轮复习第二章函数概念与基本初等函数Ⅰ第3节函数的奇偶性与周期性课件理新人教A版.pptx

1、第3节 函数的奇偶性与周期性,最新考纲 1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.,知 识 梳 理,1.函数的奇偶性,f(x)f(x),y轴,f(x)f(x),原点,2.函数的周期性,(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有_,那么就称函数yf(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中_的正数,那么这个最小正数就叫做f(x)的_正周期.,f(xT)f(x),存在一个最小,最小,微点

2、提醒,1.(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)0.(2)如果函数f(x)是偶函数,那么f(x)f(|x|). 2.奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. 3.函数周期性常用结论对f(x)定义域内任一自变量的值x:,4.对称性的三个常用结论(1)若函数yf(xa)是偶函数,则函数yf(x)的图象关于直线xa对称.(2)若对于R上的任意x都有f(2ax)f(x)或f(x)f(2ax),则yf(x)的图象关于直线xa对称.(3)若函数yf(xb)是奇函数,则函数yf(x)的图象关于点(b,0)中心对称.,基 础

3、 自 测,1.判断下列结论正误(在括号内打“”或“”),(1)函数yx2在x(0,)时是偶函数.( ) (2)若函数f(x)为奇函数,则一定有f(0)0.( ) (3)若T是函数的一个周期,则nT(nZ,n0)也是函数的周期.( ) (4)若函数yf(xb)是奇函数,则函数yf(x)的图象关于点(b,0)中心对称.( ),解析 (1)由于偶函数的定义域关于原点对称,故yx2在(0,)上不具有奇偶性,(1)错. (2)由奇函数定义可知,若f(x)为奇函数,其在x0处有意义时才满足f(0)0,(2)错. (3)由周期函数的定义,(3)正确. (4)由于yf(xb)的图象关于(0,0)对称,根据图象

4、平移变换,知yf(x)的图象关于(b,0)对称,正确. 答案 (1) (2) (3) (4),2.(必修1P35例5改编)下列函数中为偶函数的是( )A.yx2sin x B.yx2cos xC.y|ln x| D.y2x解析 根据偶函数的定义知偶函数满足f(x)f(x)且定义域关于原点对称,A选项为奇函数;B选项为偶函数;C选项定义域为(0,),不具有奇偶性;D选项既不是奇函数,也不是偶函数.答案 B,答案 1,4.(2019衡水模拟)下列函数既是偶函数又在区间(0,)上单调递增的是( ),解析 对于A,yx3为奇函数,不符合题意;,对于D,y|tan x|是偶函数,但在区间(0,)上不单调

5、递增. 答案 C,5.(2017全国卷)已知函数f(x)是定义在R上的奇函数,当x(,0)时,f(x)2x3x2,则f(2)_.解析 x(,0)时,f(x)2x3x2,且f(x)在R上为奇函数,f(2)f(2)2(2)3(2)212.答案 12,6.(2019上海崇明二模)设f(x)是定义在R上以2为周期的偶函数,当x0,1时,f(x)log2(x1),则当x1,2时,f(x)_.解析 当x1,2时,x21,0,2x0,1,又f(x)在R上是以2为周期的偶函数,f(x)f(x2)f(2x)log2(2x1)log2(3x).答案 log2(3x),考点一 判断函数的奇偶性,【例1】 判断下列函

6、数的奇偶性:,因此f(x)f(x)且f(x)f(x), 函数f(x)既是奇函数又是偶函数.,函数f(x)为奇函数. (3)显然函数f(x)的定义域为(,0)(0,),关于原点对称. 当x0, 则f(x)(x)2xx2xf(x); 当x0时,x0, 则f(x)(x)2xx2xf(x); 综上可知:对于定义域内的任意x,总有f(x)f(x)成立,函数f(x)为奇函数.,规律方法 判断函数的奇偶性,其中包括两个必备条件: (1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域; (2)判断f(x)与f(x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等

7、量关系式(f(x)f(x)0(奇函数)或f(x)f(x)0(偶函数)是否成立.,【训练1】 (1)下列函数中,既不是奇函数,也不是偶函数的是( ),A.f(x)g(x)是偶函数 B.f(x)g(x)是奇函数 C.f(x)g(x)是奇函数 D.f(x)g(x)是偶函数,因为F(x)F(x)且F(x)F(x), 所以F(x)g(x)f(x)既不是奇函数也不是偶函数. 答案 (1)D (2)A,考点二 函数的周期性及其应用 【例2】 (1)(一题多解)(2018全国卷)已知f(x)是定义域为(,)的奇函数,满足f(1x)f(1x).若f(1)2,则f(1)f(2)f(3)f(50)( )A.50 B

8、0 C.2 D.50(2)已知f(x)是R上最小正周期为2的周期函数,且当0x2时,f(x)x3x,则函数yf(x)的图象在区间0,6上与x轴的交点个数为_.,解析 (1)法一 f(x)在R上是奇函数,且f(1x)f(1x). f(x1)f(x1),即f(x2)f(x). 因此f(x4)f(x),则函数f(x)是周期为4的函数, 由于f(1x)f(1x),f(1)2, 故令x1,得f(0)f(2)0 令x2,得f(3)f(1)f(1)2, 令x3,得f(4)f(2)f(2)0, 故f(1)f(2)f(3)f(4)20200, 所以f(1)f(2)f(3)f(50)120f(1)f(2)2.,

9、故f(1)f(2)f(3)f(50)12f(1)f(2)f(3)f(4)f(1)f(2)1220(2)0202. (2)因为当0x2时,f(x)x3x.又f(x)是R上最小正周期为2的周期函数,且f(0)0, 则f(6)f(4)f(2)f(0)0. 又f(1)0,f(3)f(5)f(1)0, 故函数yf(x)的图象在区间0,6上与x轴的交点有7个. 答案 (1)C (2)7,规律方法 1.根据函数的周期性和奇偶性求给定区间上的函数值或解析式时,应根据周期性或奇偶性,由待求区间转化到已知区间. 2.若f(xa)f(x)(a是常数,且a0),则2a为函数f(x)的一个周期.第(1)题法二是利用周期

10、性构造一个特殊函数,优化了解题过程.,(2)已知f(x)是定义在R上的偶函数,且f(x4)f(x2).若当x3,0时,f(x)6x,则f(919)_.,(2)f(x4)f(x2), f(x2)4f(x2)2,即f(x6)f(x), f(919)f(15361)f(1), 又f(x)在R上是偶函数, f(1)f(1)6(1)6,即f(919)6. 答案 (1)A (2)6,考点三 函数性质的综合运用 多维探究 角度1 函数单调性与奇偶性,【例31】 (2019石家庄模拟)设f(x)是定义在2b,3b上的偶函数,且在2b,0上为增函数,则f(x1)f(3)的解集为( )A.3,3 B.2,4 C.

11、1,5 D.0,6,解析 因为f(x)是定义在2b,3b上的偶函数, 所以有2b3b0,解得b3, 由函数f(x)在6,0上为增函数,得f(x)在(0,6上为减函数. 故f(x1)f(3)f(|x1|)f(3)|x1|3,故2x4. 答案 B,规律方法 1.函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性. 2.本题充分利用偶函数的性质f(x)f(|x|),避免了不必要的讨论,简化了解题过程.,角度2 函数的奇偶性与周期性,A.2 B.18 C.18 D.2,解析 (1)f(x)满足f(x5)f(x), f(x)是周期为5的函数, f(2 018)f(40353

12、)f(3)f(52)f(2),,f(2)f(2)(2332)2,故f(2 018)2. (2)由yf(x)和yf(x2)是偶函数知f(x)f(x), 且f(x2)f(x2),则f(x2)f(x2). f(x4)f(x),则yf(x)的周期为4.,答案 (1)D (2)B,规律方法 周期性与奇偶性结合的问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.,【训练3】 (1)(2019重庆九校模拟)已知奇函数f(x)的图象关于直线x3对称,

13、当x0,3时,f(x)x,则f(16)_.,解析 (1)根据题意,函数f(x)的图象关于直线x3对称,则有f(x)f(6x), 又由函数为奇函数,则f(x)f(x), 则有f(x)f(6x)f(x12), 则f(x)的最小正周期是12, 故f(16)f(4)f(4)f(2)(2)2.,(2)由于函数f(x)是定义在R上的偶函数,,得f(ln t)f(1). 又函数f(x)在区间0,)上是单调递增函数,,思维升华 1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.利用函数奇偶性可以解决以下问题:(1)求函数值;(2)求解析式;(

14、3)求函数解析式中参数的值;(4)画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T是函数的周期,则kT(kZ且k0)也是函数的周期”的应用.,易错防范 1.f(0)0既不是f(x)是奇函数的充分条件,也不是必要条件. 2.函数f(x)满足的关系f(ax)f(bx)表明的是函数图象的对称性,函数f(x)满足的关系f(ax)f(bx)(ab)表明的是函数的周期性,在使用这两个关系时不要混淆.,数学运算活用函数性质中“三个二级”结论,数学运算是解决数学问题的基本手段,通过运算能够促进学生数学思维的发展.通过常见的“二维结论”解决数学问题,可优化数学运算的过程,使学生逐步形成规范化

15、程序化的思维品质,养成一丝不苟、严谨求实的科学精神.,类型1 奇函数的最值性质,已知函数f(x)是定义在区间D上的奇函数,则对任意的xD,都有f(x)f(x)0.特别地,若奇函数f(x)在D上有最值,则f(x)maxf(x)min0,且若0D,则f(0)0.,解析 显然函数f(x)的定义域为R,,g(x)为奇函数, 由奇函数图象的对称性知g(x)maxg(x)min0, Mmg(x)1maxg(x)1min2g(x)maxg(x)min2. 答案 2,类型2 抽象函数的周期性,(1)如果f(xa)f(x)(a0),那么f(x)是周期函数,其中一个周期T2a.,(3)如果f(xa)f(x)c(

16、a0),那么f(x)是周期函数,其中的一个周期T2a.,【例2】 已知函数f(x)为定义在R上的奇函数,当x0时,有f(x3)f(x),且当x(0,3)时,f(x)x1,则f(2 017)f(2 018)( )A.3 B.2 C.1 D.0,解析 因为函数f(x)为定义在R上的奇函数, 所以f(2 017)f(2 017), 因为当x0时,有f(x3)f(x), 所以f(x6)f(x3)f(x), 即当x0时,自变量的值每增加6,对应函数值重复出现一次. 又当x(0,3)时,f(x)x1, f(2 017)f(33661)f(1)2,f(2 018)f(33662)f(2)3. 故f(2 01

17、7)f(2 018)f(2 017)31. 答案 C,类型3 抽象函数的对称性,已知函数f(x)是定义在R上的函数.,(2)若函数yf(x)满足f(ax)f(ax)0,即f(x)f(2ax),则f(x)的图象关于点(a,0)对称.,【例3】 (2018日照调研)函数yf(x)对任意xR都有f(x2)f(x)成立,且函数yf(x1)的图象关于点(1,0)对称,f(1)4,则f(2 016)f(2 017)f(2 018)的值为_.,解析 因为函数yf(x1)的图象关于点(1,0)对称, 所以函数yf(x)的图象关于原点对称, 所以f(x)是R上的奇函数,f(x2)f(x), 所以f(x4)f(x2)f(x),故f(x)的周期为4. 所以f(2 017)f(50441)f(1)4, 所以f(2 016)f(2 018)f(2 014)f(2 0144)f(2 014)f(2 014)0, 所以f(2 016)f(2 017)f(2 018)4. 答案 4,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1