1、- 1 -5.3 分式的加减法一课一练基础闯关题组 分式的通分1.下列说法中,正确的是 ( )A. , 的最简公分母是 18a3b2232 162B. , 的最简公分母是 ab(x-y)(y-x)x() y()C. , , 的最简公分母是 -12x643x122x+143D. , , 的最简公分母是(x+1) 2(x-1)1+1 11+2+2 -212【解析】选 D.A.最简公分母是 6a2b2,故本选项错误;B.最简公分母是 ab(x-y),故本选项错误;C.最简公分母是 12x3,故本选项错误;D.最简公分母是(x+1) 2(x-1),故本选项正确.【方法技巧】(1)确定最简公分母的一般方
2、法:把各分式分母系数的最小公倍数作为最简公分母的系数;把相同字母(或因式分解后得到的相同因式)的最高次幂作为最简公分母的一个因式;把只在一个分式的分母中出现的字母连同它的指数作为最简公分母的一个因式.(2)注意:分式通分的依据是分式的基本性质,关键是确定几个分式的最简公分母;通分中分母提出的负号要放在分数线前面,公分母前不带负号.2. 与 通分时,分式 分子与分母同乘的因式是 世纪金榜导学号 10164116( )142 16322 142A.6abc B.12a5b2c2 C.3abc D.3a2bc- 2 -【解析】选 C. 与 的最简公分母是 12a3b2c2.12a3b2c24a2bc
3、=3abc.142 163223.分式 , , 的最简公分母是 _.32(+1) 15(1)21221【解析】x 2-1=(x+1)(x-1),因此最简公分母是 10(x+1)(x-1)2.答案:10(x+1)(x-1) 24.通分:(1) , , .2 cx2(2) , , .a b33 122+2【解析】(1)最简公分母是 2ab, = = , = = ,2222422cc2222= = .x2x2x2(2)最简公分母是 3(x-y)2, = = ,a a3()()3()3()3()2=- =-b33 b3() b()3()()= ,b()3()2= = = .122+2 1()2 13(
4、)23 33()2题组 异分母分式的加减法1. + 的运算结果正确的是 ( )11A. B.1+ 2+- 3 -C. D.a+ba+【解析】选 C. + = + = .11baa+2.(2017陕西中考)化简 - 的正确结果为 ( )x y+A.1 B.x2+222C. D.x2+y2x+【解析】选 B. - = - = - =x y+ x(+)()(+) y()(+)()x2+22x222.x2+2223.化简 - 的结果是_.x2+6+929 x3【解析】原式= - =(+3)2(+3)(3) x(+3)(+3)(3)(+3)(+3)(+3)(3)= .33答案:33【一题多解】原式= -
5、 = - = .(+3)2(+3)(3) x3x+33 x3 33答案:334.若 a2+5ab-b2=0,则 - 的值为_.ba- 4 -世纪金榜导学号 10164117【解析】由 a2+5ab-b2=0b2-a2=5ab, - = = =5.bab225答案:55.(2017郴州中考)先化简,再求值: - ,其中 a=1.13 629【解析】 - = -13 629 a+3(3)(+3) 6(3)(+3)=a+36(3)(+3)=a3(3)(+3)= ,1+3当 a=1 时,原式= = .11+3146.已知 - =3,求 的值.11 5+5世纪金榜导学号 10164118【解析】 - =
6、3, =3,11 yy-x=3xyx-y=-3xy,= = = = .5+5 5()+5(3)+3 -14472题组 整式与分式的加减法1.化简 -a-1 的结果是 ( )a21- 5 -A. B.-11 11C. D.2+11 a211【解析】选 A. -a-1= - = .a21 a21a211 11【方法技巧】整式与分式相加减的方法一个分式与一个整式相加减时,可以把整式当成一个整体,整式前面是负号时,要加括号,看成分母是 1 的分式进行通分,这样做不易出错.2.计算:1- =_.12【解析】原式= = .a212 a32答案:a323.化简:(1)a-b- .(+)2+(2) + +2.
7、x24+424 x22+2【解析】(1)原式=a-b-(a+b)=a-b-a-b=-2b.(2) + +2x24+424 x22+2= + +2(2)2(+2)(2) x2(+2)= + +2x2+2 x2(+2)- 6 -= + +x(2)(+2) x2(+2)2(+2)(+2)=x22+2+22+4(+2)= .32+32(+2)题组 分式的混合运算1.化简: - 的结果为 ( )a242+2+1a24+4(+1)2 22A. B.a+22 a42C. D.aa2【解析】选 C. - = -a242+2+1a24+4(+1)2 22(+2)(2)(+1)2 (+1)2(2)2 22= -
8、= = .a+22 22a+222 a22.如果 a+b=2,那么代数式 的值是 ( )(a2) a世纪金榜导学号 10164119A.2 B.-2 C. D.-12 12【解析】选 A. = (a2) aa22 a= =a+b=2.()(+) a【方法技巧】分式混合运算的方法(1)异分母分式的加减运算中,注意将分式的分子与分母进行因式分解后,再进行运算.(2)如果有括号,按先算小括号,再算中括号,最后算大括号的顺序计算.- 7 -(3)混合运算的结果必须化成最简分式或整式.(4)分子或分母的系数是负数时,要把“-”提到该分式的前面.3.某工厂原计划 a 天生产 b 件产品,现要提前 2 天完
9、成,则现在每天要比原来多生产产品_件.世纪金榜导学号 10164120【解析】现在每天要比原来多生产产品- = (件).b2b 2(2)答案:2(2)4.(2017十堰中考)化简: .( 2+1+221) a1【解析】原式= = = .2(1)+(+2)(+1)(1) a1 3(+1)(1)a1 3+15.(2017威海中考)先化简 ,然后从- x 的范围内选取一个x22+121 (x1+1+1) 5 5合适的整数作为 x 的值代入求值.【解析】原式= = x22+121 x1+1(1) (1)2(+1)(1)x1(1)(+1)+1 = = x1+1x1(21)+1 x1+1x2+1= =-
10、.x1+1 x+1(1)1满足- x 的整数有-2,-1,0,1,2,5 5又x=1 或 x=0 时,分母的值为 0,x 只能取-2 或 2.- 8 -当 x=-2 时,原式= ,当 x=2 时,原式=- .(答对两种情况之一即可)12 12已知 + 的计算结果是A+1 B2+ = ,x2(+1)(2) 2(+1)(+1)(2) 3(+1)(2)求常数 A,B 的值.【解析】因为 +A+1 B2= +A(2)(+1)(2) B(+1)(+1)(2)=(+)+2(+1)(2)= ,3(+1)(2)所以 A+=3,2=0,解得 A=1,=2,所以常数 A 的值是 1,B 的值是 2.【母题变式】等式 = + 对于任何使分母不为 0 的 x 均成立,求 A,B 的值.8+92+6 A+3 B2【解析】 = + = ,8+92+6 A+3 B2(+)+322+6可得 A+B=8,3B-2A=9,解得:A=3,B=5.- 9 -
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1