1、,2 频率的稳定性,1.了解必然事件和不可能事件发生的概率,体会概率的取值在01之间 2.经历“猜测试验并收集试验数据分析试验结果”的活动过程,体会不确定现象的特点,发展随机观念 3.在经历活动的过程中,培养学生合作交流的意识和勇于探索的精神,1.在一定条件下,有些事情我们事先能肯定它一定发生,这些事情称为 ;,必然事件,2.有些事情我们事先能肯定它一定不会发生,这些事情称为 ;,必然事件与不可能事件统称为确定事件,不可能事件,3.有些事情我们事先无法肯定它会不会发生,这些事情称为 ,也称_.,不确定事件,不确定事件发生的可能性是有大小的.,随机事件,全班分成八组,每组同学掷一枚硬币30次,
2、记录好“正面向上”的次数, 计算出“正面向上”的频率.,抛掷次数n,“正面向上”的频数m,“正面向上”的频率m/n,根据实验所得的数据想一想: “正面向上” 的频率有什么规律? 在0.5附近上下“摆动”,随着抛掷次数的增加,“正面向上”的频率的变化趋势有何规律?,在试验次数很大时,“正面向上”的频率会在一个常数附近摆动,即“正面向上”的频率具有稳定性.,【想一想】,事件A发生的频率,用来表示事件A发生的可能性的大小,我们把这个刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为P(A). 事件一般用大写英文字母,表示,因为在n次试验中,事件发生的频数m满足 0mn ,所以0m/n1 ,
3、进而可知频率m/n所稳定到的常数p满足0m/n1,因此0P(A)1.,小组议一议:p的取值范围,判断下列哪些事件是必然事件、不可能事件或不确定事件:,1.打开电视机,正在播广告. 2.地球总是绕着太阳转. 3.明天的太阳从西方升起来. 4.掷两个骰子,两个6朝上. 5.异号两数相乘,积为正数.,不确定事件,必然事件,不可能事件,不确定事件,不可能事件,【做一做】,转盘A,转盘B,如图是两个可以自由转动的转盘,每个转盘都被分成6个相等的扇形.利用这两个转盘做下面的游戏:,(1)甲自由转动转盘A,同时乙自由转动转盘B. (2)转盘停止后,指针指向几就按顺时针方向走几格,得到一个数字.(如:在转盘A
4、中指针指向3,就按顺时针方向走3格,得到数字6) (3)如果最终得到的数字是偶数就得1分,否则不得分. (4)转动10次转盘,记录每次得分的结果,累计得分最高的人为胜者.,2.对于转盘B,最终得到的数字是偶数,是 事件, 最终得到的数字是奇数,是 事件.,1.对于转盘A,最终得到的数字是偶数,是 事件, 最终得到的数字是奇数,是 事件.,转盘A,转盘B,必然,不确定,不可能,不确定,【议一议】,人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性.,你能用自己的语言描述必然事件发生的可能性吗?不可能事件呢?不确定事件呢?,【归纳升华】,不确定事件发生的可能性是
5、 .,大于0且小于1,用下图表示事件发生的可能性:,朝上的数字是6,朝上的数字不是6,投掷一枚均匀的骰子,你能在上图中大致表示出“朝上的数字是6”和“朝上的数字不是6”发生的可能性吗?,1.某事件发生的可能性如下: 极有可能,但不一定发生. ( ) 发生与不发生的可能性一样. ( ) 发生的可能性极小. ( ) 不可能发生. ( ) 试将它们与下面的数值联系起来:A.0.1% B.50% C.0 D.99.99%,D,B,A,C,2.(湛江中考)下列成语中描述的事件必然发生的 是( )A.水中捞月 B.瓮中捉鳖C.守株待兔 D.拔苗助长 【解析】选B.根据必然事件的定义可知应选B.,3.(南通
6、中考)质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为_. 【解析】在1,2,3,4,5,6中有3个偶数,所以向上一面的数字是偶数的概率为 答案:,4.(青岛中考)一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有_个黄球.,【解析】由题意可知试验中摸出红球的频率是0.4,因此可以认为口袋里摸出红球的可能性是0.4,则口袋里的球的个数为100.4=25(个),所以口袋里大约有黄球15个. 答案:15,5.在一个不透明的口袋中装着大小、外形一模一样的 5个红球、3个蓝球、2个白球,从中任意摸一球,则 (1)摸到红球的可能性是 . (2)摸到蓝球的可能性是 . (3)摸到白球的可能性是 .,1.理解频率与概率的关系. 2.通过做试验知道不确定事件发生的可能性大小. 3.明确三种事件发生的概率.,通过本课时的学习,需要我们掌握:,一个人最大的破产是绝望,最大的资产是希望.,
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1