ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:1.04MB ,
资源ID:1113958      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1113958.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019版七年级数学下册第一章整式的乘除1.4整式的乘法(第3课时)教案(新版)北师大版.doc)为本站会员(ideacase155)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019版七年级数学下册第一章整式的乘除1.4整式的乘法(第3课时)教案(新版)北师大版.doc

1、 1 -4 整式的乘法第 3 课时【教学目标】知识技能目标在具体情境中了解多项式乘法的意义,会利用法则进行简单的多项式乘法运算.过程性目标经历探索多项式与多项式乘法法则的过程,理解多项式与多项式相乘的运算算理,体会乘法分配律的作用及转化思想在解决问题过程中的应用,发展学生有条理的思考和语言表达能力.情感态度目标在解决问题的过程中了解数学的价值,发展“用数学”的信心.【重点难点】重点:理解多项式与多项式乘法法则,并会进行多项式乘法的运算.难点:灵活运用多项式乘多项式的运算法则,探索多项式乘法法则,注意运算中的“漏项”“符号”问题.【教学过程】一、创设情境图 1 是一个长和宽分别为 m,n 的长

2、方形纸片,如果它的长和宽分别增加 a,b,所得长方形(图 2)的面积可以怎样表示?二、探究归纳1.探究活动一内容:请用不同的方法表示上题中大长方形的面积.学生通过观察,归纳发现:方法一:长方形的长为(m+a),宽为(n+b),所以面积可以表示为(m+a)(n+b);方法二:长方形可以看做是由四个小长方形拼成的,四个小长方形的面积分别为 mn,mb,an,ab,所以长方形的面积可以表示为 mn+mb+an+ab;方法三:长方形可以看做是由上下两个长方形组成的,上面的长方形面积为 b(m+a),下面的长方形面积为n(m+a),这样长方形的面积就可以表示为 n(m+a)+b(m+a),根据上节课单项

3、式乘多项式的法则,结果等于nm+na+bm+ba- 2 -方法四:长方形可以看做是由左右两个长方形组成的,左边的长方形面积为 m(b+n),右边的长方形面积为a(b+n),这样长方形的面积就可以表示为 m(b+n)+a(b+n),根据上节课单项式乘多项式的法则,结果等于mb+mn+ab+an结论 1(m+a)(n+b)=n(m+a)+b(m+a)或(m+a)(n+b)=m(b+n)+a(b+n)或(m+a)(n+b)=mn+mb+an+ab2.探究活动二内容:教师设置三个层层递进的问题:1.你能说出(m+a)(n+b)=n(m+a)+b(m+a)这一步运算的道理吗?2.结合这个算式(m+a)(

4、n+b)=mn+mb+an+ab,你能说说如何进行多项式与多项式相乘的运算吗?3.归纳总结多项式与多项式相乘的运算法则.结论 2 多项式乘多项式的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.例 1 计算:(1)(1-x)(0.6-x) (2)(2x+y)(x-y)(3)(-2m+n)2议一议:计算中常犯的错误有哪些?1.两个多项式相乘,是把一个多项式的每一项分别与另一个多项式的每一项相乘,再把它们的积相加,要注意不要漏乘.2.进行乘法运算时,要注意确定积中各项的符号.3.两个多项式相乘,它们的积是和的形式,在没合并同类项之前,积的项数应是这两个多项

5、式项数的积,注意检查.三、交流反思教师提问:1.这一节课我们一起学习了哪些知识和思想方法?2.对这些内容你有什么体会?与同伴进行交流.在学生自由发言的基础上,师生共同总结:1.知识:多项式乘多项式的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.- 3 -2.思想:数形结合、整体思想、转化思想四、检测反馈1.基础巩固练习:计算:(1)(m+2n)(m-2n)(2)(2n+5)(n-3)(3)(x-1)(x2+x+1)(4)(x+2y)2(5)(2x-1)(x+5)-(x-5)(x+3)2.拓展延伸:若(mx+y)(x-y)=2x 2+nxy-y2,求

6、m,n 的值.五、布置作业1.完成课本习题 1.82.拓展作业:解方程(x+2)(x-3)=(x-1)(x+4).3.预习作业:两项式乘以两项式,结果可能是四项吗?可能是三项吗?可能是两项吗?请你举例说明.六、板书设计(m+a)(n+b)=n(m+a)+b(m+a)或(m+a)(n+b)=m(b+n)+a(b+n)或(m+a)(n+b)=mn+mb+an+ab多项式乘多项式的法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项;再把所得的积相加.七、教学反思整式的乘法共由三课时组成,这一板块的知识前后衔接紧密、环环相扣,因此在这三课时中都采用了先回顾,再呈现问题情境的引入方法实现“温故知新”.但是在教学过程中,我们不应仅仅让学生感受知识需要“温故知新”,更应该让他们体会到解决这些“新”都是用了同样的数学思想方法转化.这三课时法则的探索在难度上是逐渐深入的,在方法和思路上却又是统一的,通过这三课时的学习,应让学生体会:当他们遇到新问题时,可以效仿之前用到的数学思想方法来解决,从而真正掌握数学学习方法,提高数学学习能力.- 4 -

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1