ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:58KB ,
资源ID:1135186      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1135186.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年高考数学二轮复习专题突破练13求数列的通项及前n项和理.doc)为本站会员(priceawful190)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019年高考数学二轮复习专题突破练13求数列的通项及前n项和理.doc

1、1专题突破练 13 求数列的通项及前 n项和1.(2018 河南郑州一模,理 17)已知等差数列 an的前 n 项和为 Sn,且 a2+a5=25,S5=55.(1)求数列 an的通项公式;(2)设 anbn=,求数列 bn的前 n 项和 Tn.2.已知 an为公差不为零的等差数列,其中 a1,a2,a5成等比数列, a3+a4=12.(1)求数列 an的通项公式;(2)记 bn=,设 bn的前 n 项和为 Sn,求最小的正整数 n,使得 Sn.23.(2018 山西太原三模,17)已知数列 an满足 a1=,an+1=.(1)证明数列是等差数列,并求 an的通项公式;(2)若数列 bn满足

2、bn=,求数列 bn的前 n 项和 Sn.4.(2018 江西上饶三模,理 17)已知等比数列 an的前 n 项和为 Sn,且 6Sn=3n+1+a(nN *).(1)求 a 的值及数列 an的通项公式;(2)若 bn=(3n+1)an,求数列 an的前 n 项和 Tn.35.已知数列 an满足 a1=1,a2=3,an+2=3an+1-2an(nN *).(1)证明:数列 an+1-an是等比数列;(2)求数列 an的通项公式和前 n 项和 Sn.6.已知等差数列 an满足: an+1an,a1=1,该数列的前三项分别加上 1,1,3 后成等比数列,an+2log2bn=-1.(1)求数列

3、an,bn的通项公式;(2)求数列 anbn的前 n 项和 Tn.47.(2018 宁夏银川一中一模,理 17)设 Sn为数列 an的前 n 项和,已知 an0,+2an=4Sn+3.(1)求 an的通项公式:(2)设 bn=,求数列 bn的前 n 项和 .8.设 Sn是数列 an的前 n 项和, an0,且 4Sn=an(an+2).(1)求数列 an的通项公式;5(2)设 bn=,Tn=b1+b2+bn,求证: Tn1 008,6故所求的 n=1 009.3.(1)证明 a n+1=,=2,是等差数列, +(n-1)2=2+2n-2=2n,即 an=(2)解 b n=,S n=b1+b2+

4、bn=1+,则 Sn=+,两式相减得 Sn=1+=2,S n=4-4.解 (1) 6Sn=3n+1+a(nN *), 当 n=1 时,6 S1=6a1=9+a;当 n2 时,6 an=6(Sn-Sn-1)=23n,即 an=3n-1. an为等比数列,a 1=1,则 9+a=6,a=-3, an的通项公式为 an=3n-1.(2)由(1)得 bn=(3n+1)3n-1,Tn=b1+b2+bn=430+731+(3n+1)3n-1,3Tn=431+732+(3n-2)3n-1+(3n+1)3n,由 - ,得 -2Tn=4+32+33+3n-(3n+1)3n,-2Tn=4+-(3n+1)3n,-2

5、Tn=,T n=5.(1)证明 a n+2=3an+1-2an(nN *),a n+2-an+1=2(an+1-an)(nN *),=2.a 1=1,a2=3, 数列 an+1-an是以 a2-a1=2 为首项,公比为 2 的等比数列 .(2)解 由(1)得, an+1-an=2n(nN *),7a n=(an-an-1)+(an-1-an-2)+(a2-a1)+a1=2n-1+2n-2+2+1=2n-1,(nN *).Sn=(2-1)+(22-1)+(23-1)+(2n-1)=(2+22+23+2n)-n=-n=2n+1-2-n.6.解 (1)设等差数列 an的公差为 d,且 d0,由 a1

6、1,a2=1+d,a3=1+2d,分别加上 1,1,3 后成等比数列,得(2 +d)2=2(4+2d),解得 d=2,a n=1+(n-1)2=2n-1.a n+2log2bn=-1, log2bn=-n,即 bn=(2)由(1)得 anbn=Tn=+,Tn=+,- ,得 Tn=+2+T n=1+=3-=3-7.解 (1)由 +2an=4Sn+3,可知 +2an+1=4Sn+1+3.两式相减,得 +2(an+1-an)=4an+1,即 2(an+1+an)=(an+1+an)(an+1-an).a n0,a n+1-an=2.+2a1=4a1+3,a 1=-1(舍)或 a1=3.则 an是首项为 3,公差 d=2 的等差数列, an的通项公式 an=3+2(n-1)=2n+1.(2)a n=2n+1,b n=, 数列 bn的前 n 项和 Tn=+8.(1)解 4 Sn=an(an+2),当 n=1 时,4 a1=+2a1,即 a1=2.当 n2 时,4 Sn-1=an-1(an-1+2).由 - 得 4an=+2an-2an-1,即 2(an+an-1)=(an+an-1)(an-an-1).a n0,a n-an-1=2,a n=2+2(n-1)=2n.(2)证明 b n=,8T n=b1+b2+bn= 1-+ 1-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1