ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:2.05MB ,
资源ID:1145675      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1145675.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(版选修1_1.ppt)为本站会员(unhappyhay135)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

版选修1_1.ppt

1、3.4 生活中的优化问题,题型一 面积、体积、最值问题,例1,【答案】 (1)3 (2)见自主解答,规律总结 1解决面积、体积最值问题的思路 解决面积、体积的最值问题,要正确引入变量,将面积或体积表示为变量的函数,结合实际问题的定义域,利用导数求解函数的最值 2利用导数解决优化问题的基本思路,3解决优化问题时应注意的问题 (1)列函数关系式时,注意实际问题中变量的取值范围,即函数的定义域 (2)一般地,通过函数的极值来求得函数的最值如果函数f(x)在给定区间内只有一个极值点或函数f(x)在开区间上只有一个点使f(x)0,则只要根据实际意义判断该值是最大值还是最小值即可,不必再与端点处的函数值进

2、行比较,1如图,要设计一矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌面积最小?,变式训练,令S(x)0,得x140,令S(x)0,得20x140. 函数S(x)在(140,)上单调递增,在(20,140)上单调递减,S(x)的最小值为S(140) 当x140时,y175. 即当x140,y175时,S(x)取得最小值24 500, 故当广告牌的高为140 cm,宽为175 cm时,可使广告牌的面积最小,题型二

3、 用料最省(成本最低)问题,例2,规律总结 解决实际生活中用料最省、费用最低、损耗最小、最节省时间等问题,需要求相应函数的最小值,此时根据f(x)0求出极值点(注意根据实际意义舍去不合适的极值点)后,判断函数在该点附近满足左减右增,则此时的极小值就是所求函数的最小值,变式训练,令g(x)0,则x8,当08时,g(x)0,所以x8时,函数取得极小值,且为最小值 故当建成8座球场时,每平方米的综合费用最省 答案 (1)21 (2)见解析,某公司为了获得更大的利润,每年要投入一定的资金用于广告促销经调查,每年投入广告费t(单位:百万元),可增加销售额约为t25t(单位:百万元,且0t5) (1)若该

4、公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?,题型三 利润最大(成本最低)问题,例3,令g(x)0,解得x2(舍去)或x2. 当0x0;当2x3时,g(x)0, 故g(x)在0,2)上是增函数,在(2,3上是减函数 当x2时,g(x)取最大值,即将2百万元用于技术改造,1百万元用于广告促销时,该公司由此获得的收益最大,规律总结 1经济生活中优化问题的解法 经济生活中要分析生产的成本与利润及利润增减的快慢,以产量或单价为自变量很容易建立函数关系,从而可以利用导数来分析、研究、指导生产活动 2关于利润问题常用的两个等量关系 (1)利润收入成本 (2)利

5、润每件产品的利润销售件数,3在一定面积的水域中养殖某种鱼类,每个网箱的产量p是网箱个数x的一次函数,如果放置4个网箱,则每个网箱的产量为16吨;如果放置7个网箱,则每个网箱的产量为10吨,由于该水域面积限制,最多只能放置10个网箱 (1)试问放置多少个网箱时,总产量Q最高? (2)若鱼的市场价为m万元/吨,养殖的总成本为(5ln x1)万元,对点训练,当m0.25时,应放置多少个网箱才能使总收益y最大? 当m0.25时,求使得收益y最高的所有可能的x值组成的集合,(12分)如图所示,有一块半椭圆形钢板,椭圆的长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD2x,梯形面积为S.,规范解答(十) 导数在解决实际问题中的应用,典例,典题示例,(1)求S以x为自变量的函数表达式,并写出其定义域; (2)求S的最大值,某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m元(m为常数,且2m3),设每个水杯的出厂价为x元(35x41),根据市场调查,水杯的日销售量与ex(e为自然对数的底数)成反比例,已知每个水杯的出厂价为40元时,日销售量为10个 (1)求该工厂的日利润y(元)与每个水杯的出厂价x(元)的函数关系式; (2)当每个水杯的出厂价为多少元时,该工厂的日利润最大,并求日利润的最大值,典题试解,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1