ImageVerifierCode 换一换
格式:PPT , 页数:36 ,大小:1.40MB ,
资源ID:1150845      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1150845.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018版高中数学第二章概率2.5.2离散型随机变量的方差与标准差课件苏教版选修2_3.ppt)为本站会员(cleanass300)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2018版高中数学第二章概率2.5.2离散型随机变量的方差与标准差课件苏教版选修2_3.ppt

1、2.5.2 离散型随机变量的方差与标准差,第2章 2.5 随机变量的均值和方差,学习目标 1.理解取有限个值的离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题. 3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 方差、标准差的定义及方差的性质,甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为X和Y,X和Y的概率分布如下:,思考1,试求E(X),E(Y).,答案,思考2,能否由E(X)与E(Y)的值比较两名工人技术水平的高低?,答案,答

2、案 不能,因为E(X)E(Y).,思考3,试想用什么指标衡量甲、乙两工人技术水平的高低?,答案,答案 方差.,方差:V(X)2 ,其中,pi0,i1,2,n,p1p2pn1.,(1)离散型随机变量的方差和标准差 设离散型随机变量X的均值为,其概率分布表如下:,梳理,(x1)2p1(x2)2p2(xn)2pn,标准差: . 意义:方差刻画了随机变量X与其均值的 程度. (2)方差的性质:V(aXb) .,平均偏离,a2V(X),知识点二 两点分布、超几何分布与二项分布的方差,1.两点分布:若X01分布,则V(X) . 2.超几何分布:若XH(n,M,N),则V(X) . 3.二项分布:若XB(n

3、,p),则V(X) .,p(1p),np(1p),题型探究,例1 在一个不透明的纸袋里装有5个大小相同的小球,其中有1个红球和4个黄球,规定每次从袋中任意摸出一球,若摸出的是黄球则不再放回,直到摸出红球为止,求摸球次数X的均值和方差.,解答,类型一 求随机变量的方差,解 X的可能取值为1,2,3,4,5.,X的概率分布为,求离散型随机变量X的均值与方差的基本步骤 (1)理解X的意义,写出X可能取的全部值. (2)求X取每个值的概率. (3)写出X的概率分布. (4)由均值的定义求E(X). (5)由方差的定义求V(X).,反思与感悟,跟踪训练1 甲,乙两人独立解某一道数学题,已知该题被甲独立解

4、出的概率为0.6,被甲或乙解出的概率为0.92, (1)求该题被乙独立解出的概率;,解 记甲、乙分别解出此题的事件记为A,B. 设甲独立解出此题的概率为P1,乙为P2, 则P(A)P10.6,P(B)P2,P1P2P1P20.92, 0.6P20.6P20.92, 则0.4P20.32,即P20.8.,解答,(2)求解出该题的人数X的均值和方差.,解答,0.60.20.40.80.44. X的概率分布为,E(X)00.0810.4420.48 0.440.961.4, V(X)(01.4)20.08(11.4)20.44(21.4)20.48 0.156 80.070 40.172 80.4.

5、,例2 某厂一批产品的合格率是98%. (1)计算从中抽取一件产品为正品的数量的方差;,解 用表示抽得的正品数,则0,1. 服从两点分布,且P(0)0.02,P(1)0.98, 所以V()p(1p)0.98(10.98)0.019 6.,类型二 两点分布与二项分布的方差,解答,(2)从中有放回地随机抽取10件产品,计算抽出的10件产品中正品数的方差及标准差.,解 用X表示抽得的正品数,则XB(10,0.98), 所以V(X)100.980.020.196,,解答,解此类问题,首先要确定正确的离散型随机变量,然后确定它是否服从特殊分布,若它服从两点分布,则其方差为p(1p);若其服从二项分布,则

6、其方差为np(1p)(其中p为成功概率).,反思与感悟,跟踪训练2 (1)已知随机变量X服从二项分布B(n,p),若E(X)30,V(X)20,则p_.,答案,解析,答案,解析,10,当堂训练,1.已知随机变量X的概率分布为,答案,2,3,4,5,1,解析,2,3,4,5,1,2.同时抛掷两枚质地均匀的硬币10次,设两枚硬币同时出现反面的次数为,则V()_.,答案,2,3,4,5,1,解析,3.已知离散型随机变量X的概率分布如下表所示,若E(X)0,V(X)1,则a_,b_.,答案,2,3,4,5,1,解析,2,3,4,5,1,4.已知随机变量XB(100,0.2),那么V(4X3)的值为_.

7、,答案,2,3,4,5,1,解析,解析 由XB(100,0.2)知,n100,p0.2, 由公式得V(X)np(1p)1000.20.816, 因此V(4X3)42V(X)1616256.,256,5.编号为1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的人数是,求E()和V().,解答,2,3,4,5,1,解 的所有可能取值为0,1,3,0表示三位同学全坐错了,有2种情况,即编号为1,2,3的座位上分别坐了编号为2,3,1或3,1,2的学生,,2,3,4,5,1,1表示三位同学只有1位同学坐对了,,3表示三位学生全坐对了,即对号入座,,所以的概率分布为,2,3,4,5,1,规律与方法,1.随机变量的方差和标准差都反映了随机变量取值的稳定与波动、集中与离散的程度,以及随机变量取值偏离于均值的平均程度.方差V(X)或标准差 越小,则随机变量X偏离均值的平均程度越小;方差V(X)或标准差 越大,表明偏离的平均程度越大,说明X的取值越分散.,2.求离散型随机变量X的均值、方差的步骤 (1)理解X的意义,写出X的所有可能的取值; (2)求X取每一个值的概率; (3)写出随机变量X的概率分布; (4)由均值、方差的定义求E(X),V(X). 特别地,若随机变量服从两点分布或二项分布,可根据公式直接计算E(X)和V(X).,本课结束,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1