ImageVerifierCode 换一换
格式:PPT , 页数:25 ,大小:998KB ,
资源ID:1155099      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1155099.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019高考数学一轮复习第九章平面解析几何9.4椭圆及其性质课件理.ppt)为本站会员(priceawful190)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019高考数学一轮复习第九章平面解析几何9.4椭圆及其性质课件理.ppt

1、9.4 椭圆及其性质,高考理数,考点一 椭圆的定义及其标准方程 1.椭圆的定义 把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹 叫做椭圆. 椭圆定义中的常数2a|F1F2|,即对椭圆上任意一点M都有|MF1|+|MF2|= 2a|F1F2|.这个条件是必要的,否则其轨迹就不是椭圆.事实上,若2a=|F1F2 |,其轨迹是 线段F1F2 ;若2a|F1F2|,其轨迹不存在. 2.(1)椭圆标准方程的推导是根据椭圆的定义,通过建立恰当的坐标系求 出的,参数b= ,它是因为化简方程的需要而引入的,它具有 明确的几何意义:b表示短半轴的长.,知识清单,(2)求椭圆的标准方

2、程应从“定形”“定式”和“定量”三个方面去思 考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在 哪条坐标轴上;“定式”是根据“形”设椭圆方程的具体形式;“定 量”是指用定义法或待定系数法确定a,b的值.,考点二 椭圆的几何性质,考点三 直线与椭圆的位置关系 直线与椭圆的位置关系主要是指公共点问题、相交弦问题及其他 综合问题.反映在代数上,就是直线与椭圆方程联立所得的方程组有无 实数解及实数解的个数的问题,它体现了方程思想的应用.如把椭圆方 程 + =1与直线方程y=kx+m联立消去y,整理成Ax2+Bx+C=0的形式(这 里的系数A一定不为零),设其判别式为. (1)当0时,直

3、线与椭圆有两个公共点M(x1,y1),N(x2,y2),则可结合根与系 数的关系代入弦长公式|MN|= =求得弦MN的长度. (2)当=0时,直线与椭圆相切,=0是直线与椭圆相切的充要条件. (3)当0时,直线与椭圆相离,0是直线与椭圆相离的充要条件.,【知识拓展】 1.点P(x0,y0)和椭圆 + =1(ab0)的关系 (1)P(x0,y0)在椭圆内 + 1. 2.如图,过椭圆的一个焦点且与长轴垂直的弦|AB|= ,称为通径.,3.如图,P为椭圆上的点,F1,F2为椭圆的两个焦点,且F1PF2=,则F1PF2 的面积为b2tan .,4.椭圆 + =1(ab0)与 + =k(k0)有相同的离

4、心率. 5.设A,B分别为椭圆 + =1(ab0)的左、右顶点,P为椭圆上不同于A, B的任意一点,则kPAkPB=- .,1.利用待定系数法求椭圆的标准方程 (1)作判断:根据条件判断椭圆的焦点是在x轴上,还是在y轴上,还是两个 坐标轴上都有可能; (2)设方程:根据上述判断设方程: + =1(ab0), + =1(ab0)或 mx2+ny2=1(m0,n0,mn); (3)找关系:根据已知条件,建立关于a,b,c或m,n的方程组; (4)得方程:解方程组,将解代入所设方程,即为所求. 注意:用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程

5、设为mx2+ny2=1(m0,n0,mn).,求椭圆的标准方程的方法,方法技巧,2.利用定义及性质求椭圆的标准方程 (1)根据动点满足的几何意义,写出标准方程. (2)建立关于a,b,c,e的方程或方程组,进而求得方程.,注意:(1)如果椭圆焦点位置不能确定,可设方程为Ax2+By2=1(A0,B0,A B)或 + =1(m2n2). (2)与椭圆 + =1共焦点的椭圆方程可设为 + =1(k-m2,k -n2). (3)与椭圆 + =1(ab0)有相同离心率的椭圆方程可设为 + =k1 (k10,焦点在x轴上)或 + =k2(k20,焦点在y轴上).,例1 (2017广东惠州三调,20)已知

6、椭圆C: + =1(ab0)的左、右焦 点分别为F1(-1,0)、F2(1,0),点A 在椭圆C上. (1)求椭圆C的标准方程; (2)是否存在斜率为2的直线,使得当直线与椭圆C有两个不同交点M,N 时,能在直线y= 上找到一点P,在椭圆C上找到一点Q,满足 = ?若 存在,求出直线的方程;若不存在,说明理由.,解题导引,解析 (1)由题意知c=1, 因为A 在椭圆C上,所以2a=|AF1|+|AF2|=2 , (2分) 所以a2=2,所以b2=a2-c2=1, 故椭圆C的方程为 +y2=1. (5分) (2)不存在满足条件的直线,证明如下:假设存在满足条件的直线,设直线 的方程为y=2x+t

7、,M(x1,y1),N(x2,y2),P ,Q(x4,y4),MN的中点为D(x0,y0), 由 消去x,得9y2-2ty+t2-8=0, (6分) 所以y1+y2= ,且=4t2-36(t2-8)0,故y0= = ,且-3t3. (8分) 由 = 得 =(x4-x2,y4-y2), (9分) 所以有y1- =y4-y2,y4=y1+y2- = t- . (10分)也可由 = 知四边形PMQN为平行四边形,又D为线段MN的中点, 因此,D也为线段PQ的中点,所以y0= = ,可得y4= 又-3t3,所以- y4-1, 与椭圆上点的纵坐标的取值范围是-1,1矛盾. (11分) 因此不存在满足条件

8、的直线. (12分),链接高考 解决圆锥曲线问题的主体思想是根据圆锥曲线的定义或几 何性质求解圆锥曲线的标准方程,并在此基础上联立直线与圆锥曲线的 方程并消元,由根与系数的关系得到含有参数的等式,然后进一步研究 问题.一般是研究参数的取值范围问题、中点弦问题、弦长或面积的最 值问题等.,1.与几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时 也要联想到图形.涉及顶点、焦点、长轴、短轴等椭圆的基本量,理清 它们之间的关系,挖掘出它们之间的联系,求解自然就不难了. 2.椭圆的离心率e= = 是刻画椭圆性质的不变量,当e越趋近于1 时,椭圆越扁,当e越趋近于0时,椭圆越圆. 求椭圆的标准

9、方程需要两个条件,而求椭圆的离心率只需要根据一个条 件得到关于a、b、c的齐次方程,结合a2=b2+c2即可求出.,椭圆的几何性质的应用策略,例2 (2017广东广州一模,8)已知F1、F2分别是椭圆C: + =1(ab0) 的左、右焦点,若椭圆C上存在点P使F1PF2为钝角,则椭圆C的离心率 的取值范围是 ( A ) A. B. C. D.,解析 设P(x0,y0),F1(-c,0),F2(c,0),由题易知|x0| + 有解,即c2( + )min,又 =b2- ,b2+c2=a2, b2,所 以e2= ,又0e1,所以 e1,故椭圆C的离心率的取值范围是,故选A.,解题关键 本题考查了平

10、面向量的数量积在解题中的应用,体现了化归 与转化思想,解答此题的关键在于把存在点P使F1PF2为钝角转化为 与 的数量积小于0有解.,一题多解 如图,椭圆上存在点P使F1PF2为钝角以原点O为圆心,c 为半径的圆与椭圆有四个不同的交点bc,由bc,得a2-c2c2,即a22c2, 即e2 ,又0e1, e1.故椭圆C的离心率的取值范围是 ,故 选A.,1.判断直线与椭圆的位置关系,可通过讨论直线方程与椭圆方程组成的 方程组的实数解个数来确定.一般通过消元得关于x(或y)的一元二次方 程,若0,则直线与椭圆相交;若=0,则直线与椭圆相切;若0,则直线 与椭圆相离. 2.弦长公式:设A(x1,y1

11、),B(x2,y2)为直线与椭圆的两个交点,直线AB的斜率 存在,设为k(k0),则 |AB|= = , 即|AB|= |x1-x2|= |y1-y2|.,解决直线与椭圆位置关系问题的方法,3.设A(x1,y1),B(x2,y2)为椭圆 + =1(ab0)上两点,弦AB的中点为P(x0, y0),则x0= ,y0= ,可通过根与系数的关系来解决弦中点问题,这 其中的解题方法就是常说的“设而不求,整体代入”;也可以由 用-将问题转化为斜率与中点坐标的关系来解决(称 为点差法). 4.在直线与椭圆的位置关系问题中,常涉及变量的求值和最值(范围)问 题,通常要用方程和函数的思想方法,而恰当地选择函数

12、的自变量至关 重要.,例3 (2016四川,20,13分)已知椭圆E: + =1(ab0)的两个焦点与短 轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有 一个公共点T. (1)求椭圆E的方程及点T的坐标; (2)设O是坐标原点,直线l平行于OT,与椭圆E交于不同的两点A,B,且与 直线l交于点P.证明:存在常数,使得|PT|2=|PA|PB|,并求的值.,解题导引,解析 (1)由已知,a= b, 则椭圆E的方程为 + =1. 由方程组 得3x2-12x+(18-2b2)=0. 方程的判别式为=24(b2-3),由=0,得b2=3, 此时方程的解为x=2, 所以椭圆E的

13、方程为 + =1. 点T坐标为(2,1). (2)由已知可设直线l的方程为y= x+m(m0),由方程组 可得 所以P点坐标为 ,|PT|2= m2. 设点A,B的坐标分别为A(x1,y1),B(x2,y2). 由方程组 可得3x2+4mx+(4m2-12)=0. 方程的判别式为=16(9-2m2), 由0,解得- m .,由得x1+x2=- ,x1x2= .所以|PA|= =, 同理|PB|= . 所以|PA|PB|= = = = m2. 故存在常数= ,使得|PT|2=|PA|PB|.,评析 本题考查了直线与圆锥曲线相交的问题,解这类题常用方程的思 想方法,并结合根与系数的关系,两点间距离公式,难点是运算量比较大, 注意运算技巧.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1