,12.4.1 单项式除以单项式,探 究 新 知,活动1 知识准备,B,约分时,先约系数,再约同底数幂,分子中单独存在的字母及其指数直接作为商的因式.,(3),12a5c23a2,活动2 教材导学,=(123)a5-2c2 =4a3c2,3ab2,4a2,a5,a3,a2,12a3b2,新 知 梳 理,单项式除以单项式的法则,单项式相除,把_、_分别相除作为商的因式,对于只在_中出现的字母,则连同它的指数一起作为_,系数,同底数幂,被除式,商的一个因式,例1:计算:,(1)(6xy2)23xy; (2)24a3b23ab2; (3)-21a2b3c3ab.,重难互动探究,理解单项式除以单项式的法则,解:(1) (6xy2)23xy=36x2y43xy=12xy3,(2) 24a3b33ab2=(243)a3-1b2-2=8a2.,(3)-21a2b3c3ab=(-213)a2-1b3-1c= -7ab2c.,巩 固 提 高,探究问题二 单项式相关的混合计算,备选探究问题 单项式除以单项式法则的实际应用,课 堂 回 顾,本节课我们学习了什么? 还有什么疑惑吗?,课 后 作 业,习题,