ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:657.50KB ,
资源ID:1171760      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1171760.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(备考2019高考数学二轮复习选择填空狂练二十新定义类创新题理.doc)为本站会员(eastlab115)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

备考2019高考数学二轮复习选择填空狂练二十新定义类创新题理.doc

1、1新定义类创新题12018潍坊一中定义集合运算: |,ABzxyAB,设 1,2, 0,B,则集合 AB的所有元素之和为( )A0 B2 C3 D622018山东联考已知函数 1fx; 2xf; 1fx; lnfx;cosfx其中对于 f定义域内的任意 ,都存在 ,使得 1212成立的函数是( )A B C D32018牛栏山一中定义平面向量之间的一种运算“”如下,对任意的 ,mna, ,pqb,令 amqnpb下列说法错误的是( )A若 a与 共线,则令 a 0bB C对任意的 R有 AD 222Aab42018赣州模拟我国南宋著名数学家秦九韶发现了三角形三边求三角形面积的“三斜求积公式”,

2、设 BC 三个内角 , B, C所对的边分别为 a, b, c,面积为 S,则“三斜求积公式”为2214acbS若 2sin4iA, 2sin7sinCBcbaA,则用“三斜求积公式”求得的 S( )A 31654B 154C 1564D 157452018安庆质检设非空集合 |Sxmn满足:当 xS时,有 2xS,给出如下三个命题:若1m,则 S;若 12,则 14;若 12,则 0m其中正确的命题的个数为( )A0 B1 C2 D362018武邑中学祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”意思是:夹在两个平行平面之间的两个几何体,被平行于

3、这两个平面的任何一个平面所一、选择题2截,如果截面面积都相等,那么这两个几何体的体积一定相等现将曲线213648xy绕 轴旋转一周得到的几何体叫做椭球体,记为 1G,几何体 2的三视图如图所示根据祖暅原理通过考察 2G可以得到 1的体积,则 1G的体积为( )A 483B 723C 963D 192372018双流中学对于函数 fx和 g,设 0xfR, 0xgR,若存在 、 ,使得 1,则称 f与 互为“零点关联函数 ”若函数 1e2f与23gxa互为“零点关联函数”,则实数 a的取值范围为( )A 7,3B 72,3C 2,3D 2,482018工大附中若三个非零且互不相等的实数 1x,

4、2, 3成等差数列且满足 123x,则称 1x, 2, 3x成一个“ 等差数列”已知集合 0, MZ,则由 M中的三个元素组成的所有数列中,“ 等差数列 ”的个数为( )A25 B50 C51 D10092018河南适应定义域为 ,ab的函数 yfx的图象的两个端点分别为 ,Aaf, ,Bbf,,Mxy是 f图象上任意一点,其中 101ab,向量 BN若不等式 MNk恒成立,则称函数 fx在 ,ab上为“ k函数”已知函数 3265yxx在 0,3上为“ k函数”,则实数k的最小值是( )A1 B2 C3 D4102018新余四中已知函数 fx的定义域为 0,,若 fxy在 0,上为增函数,则

5、称 fx为“一阶比增函数”;若 2y在 0,上为增函数,则称 f为“二阶比增函数”我们把所有“一阶3比增函数”组成的集合记为 1,所有“二阶比增函数”组成的集合记为 2若函数 32fxhx,且 1fx, 2fx,则实数 h的取值范围是( )A 0,B 0,C ,0D ,0112018兰州一中函数 fx定义域为 D,若满足 fx在 内是单调函数;存在 ,abD使 fx在 ,ab上的值域为 ,2ab,那么就称 yfx为“成功函数”,若函数 log0,1xaft是“成功函数”,则 t的取值范围为( )A 0,B 1,4C 10,4D 10,4122018武邑中学已知 F为抛物线 2:yx的焦点, A

6、, B, C为抛物线 上三点,当FABC0时,称 AB 为“和谐三角形”,则“和谐三角形”有( )A0个 B1个 C3个 D无数个132018汕头模拟如果函数 fx在区间 D上是凸函数,那么对于区间 内的任意 1x, 2, , nx,都有 1212nnfxff xf ,若 sinyx在区间 0,内是凸函数,则在 ABC 中,sinsinABC的最大值是 _142018朝鲜族中学卵形线是常见曲线的一种,分笛卡尔卵形线和卡西尼卵形线,卡西尼卵形线是平面内与两个定点(叫作焦点)的距离之积等于常数的点的轨迹某同学类比椭圆与双曲线对卡西尼卵形线进行了相关性质的探究,设 1,0Fc, 2,是平面内的两个定

7、点, 21PFa (a是定长),得出卡西尼卵形线的相关结论:该曲线既是轴对称图形也是中心对称图形;若 c,则曲线过原点;若 0a,则曲线不存在;若 c,则 222cxyac其中正确命题的序号是_152018南昌检测记 x为不超过 x的最大整数,如 2.7, 1.32,则函数 ln1fxx二、填空题4的所有零点之和为_162018日照联考若存在实常数 k和 b,使得函数 fx和 G对其公共定义域上的任意实数 x都满足:Fxkb,和 Gxk恒成立,则称此直线 ykb为 F和 x的“隔离直线”,已知函数2fR, 10g, 2elnhx( 为自然对数的底数),有下列命题: mxfx在 3,2内单调递增

8、; f和 g之间存在“隔离直线”,且 b的最小值为 4; fx和 之间存在“隔离直线”,且 k的取值范围是 ,1; f和 h之间存在唯一的“隔离直线” 2eyx其中真命题的序号为_(请填写正确命题的序号)51【答案】D【解析】根据题意,设 1,2A, 0,B,则集合 AB中的元素可能为0,2,0,4,集合元素的互异性,则 ,4,其所有元素之和为 6,故选D2【答案】B【解析】由 1210fxx知,对函数 fx图象上任意一点 1,Axf,都存在一点 2,Bxf,使 OA,若斜率都存在,则 1OABk对于,由于 1fx,所以无论两个点如何取, O和 B的斜率均等于1,故不成立;对于,由于 2f,结

9、合图象可得过原点总有两条直线与函数的图象相交,即对函数 fx图象上任意一点 A,都存在一点 B,使 OA,故成立;对于,由于 1fx,若 12121fxx,则 21x,显然不成立,故不成立;对于,由于 lnf,则当 时,故 0OAk,直线 为 轴,此时与直线 OA垂直的直线为 y轴,而 y轴与函数 fx的图象无交点,故不成立;对于,由于 s(o)cf,结合图象可得过原点总有两条直线与函数的图象相交,即对函数 fx图象上任意一点 A,都存在一点 B,使 OA,故成立综上可得符合条件的是,故选B3【答案】B【解析】根据两向量共线的坐标表示可知A正确, mqnpab, nmqAba,所以B不正确;p

10、A,所以C正确;222222qnnqnpqab,而 222mnpqab,所以D正确,故选B4【答案】D【解析】由 2sin4iaCA,可得 24ac, 24ac,答案与解析一、选择题6由 2sin7sinaCBcbaA,可得 27acba,整理计算有 22,结合三角形面积公式可得22221171544 4acbS故选D5【答案】D【解析】已知非空集合 |Sxmn满足:当 xS时,有 2xS,故当 xn时, 2即 2n,解得 01,当 m时, S即 ,解得 ,或 ;根据 mn,得 0;若 1,由 1n,可得 1mn,即 S,故正确;若 2, 4S,即 2,且 4,故 1n,故正确;若 1n,由

11、m,可得 21,结合 0,可得 20m,故正确;故选D6【答案】D【解析】由三视图可得几何体 2G是一个底面半径为6,高为 43的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点,上底面为底面的圆锥,则圆柱的体积为 26431,圆锥的体积 21683,利用祖暅原理可计半椭球的体积为 489,所以 1G的体积为 296312,故选D7【答案】C【解析】 1exf, fx为单调递增的函数,且 1x是函数唯一的零点,由 fx, g互为“零点相邻函数”,则 g的零点在 0,2之间(1)当 x有唯一的零点时, ,解得 a,解得 1x满足题意;(2)当 g在 0,2之间有唯一零点时, 02g,解得 7,3a;

12、7(3)当 gx在 0,2之间有两个点时, 0, 20g,解得 72,3a,综上所述,解得 ,3a,故选C8【答案】B【解析】由三个非零且互不相等的实数 1x, 2, 3成等差数列且满足 123x,知213x,消去 2x,并整理得 130xx,所以 13x(舍去), 31,于是有 21在集合 10, MxZ中,三个元素组成的所有数列必为整数列,所以 1x必能被2整除,且 5,0, 1x,故这样的数组共50组,答案选B9【答案】D【解析】当 0x时, y,当 3x时, y所以 0,5A, 3,1B所以 321176MM 因为向量 BNA,所以 ,6,BN,所以 32323,760,7,所以 23

13、2271 ,设 101g, 2548g,所以函数 在 2,3单调递增,在 2,13上单调递减,所以 max243g,所以 4k,故选D10【答案】C【解析】因为 1fx且 2fx,即 2fxghx在 0,是增函数,所以 0h,而 2h在 0,不是增函数,而 21hx,所以当 x是增函数时,有 ,当 x不是增函数时,有 0h,综上所述,可得 h的取值范围是 ,0,故选C811【答案】C【解析】 log0,1xafta是“成功函数”, fx在其定义域内为增函数,1l2xaft, 2xxt, 20xt,令 20xmc, 0mt有两个不同的正数根, 14t,解得 1,4t,故选C12【答案】D【解析】

14、抛物线方程为 2yx, A, B, 为曲线 C上三点,当 FABC0时, F为 C 的重心,用如下办法构造 ,连接 并延长至 D,使 12FA,当 D在抛物线内部时,设 0,Dxy,若存在以 为中点的弦 BC,设 1,Bmn, 2,C,则 120mx, 120ny, 12nkm,则24,两式相减化为 1224n, 120BCky,所以总存在以 D为中点的弦 BC,所以这样的三角形有无数个,故选D13【答案】 32【解析】由题意,知凸函数 fx满足 12312nnffxffxxfn ,又 sinyx在区间 0,上是凸函数,所以 3isi3insin2ABCAB14【答案】【解析】由题意设 ,Px

15、y,则 222xcyxcya,即 224xcca,把方程中的 被 x代换,方程不变,故此曲线关于 y轴对称;把方程中的 y被 代换,方程不变,二、填空题9故此曲线关于 x轴对称;把方程中的 x被 代换, y被 代换,方程不变,故此曲线关于原点对称;故正确; ac, 0,代入,方程成立则曲线过原点,故正确; 12minPFc,(当且仅当, 12PFc时取等号), 212minPFc,若 0ac,则曲线不存在,故正确;若 0ca,则类比椭圆的性质,可得 222acxyac,故正确故答案为15【答案】 1e2【解析】由题意可知 xx,令 ln1gx, 3x有 1 0gx所以 gx在 3,上单调递减,

16、有 3l420,所以 ln1fx在 3,上无零点,只需考虑: 0l, 1ln0, 2 ln1x, 3 ln12x,可得三个零点分别为 1e, , ,故答案为 e16【答案】【解析】结合题意逐一考查所给命题的真假: 21mxfgx, 3,02x,则 321 0xmx, Ff在 3,02内单调递增,故对;、设 fx、 g的隔离直线为 ykxb,则 2kxb对一切实数 x成立,即有 10, 240kb,0b,又 1kb对一切 0x成立,则 210,即 2, 24k, ,即有 24且 2, 42164kbk,同理可得 0b,故对,错;函数 fx和 h的图象在 ex处有公共点 e,,因此若存在 f和 g的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为 k,则隔离直线方程为 eykx,即 eykx,由 efxkxR,可得 20x当 R恒成立,10则 0,即 20ek,故 2ek,此时直线方程为 e2yx,下面证明 hx:令 2e2elnGxx,则 e2xG,当 x时, 0x,当 时, 0,当 时, 0Gx,则当 e时, 取到极小值,极小值是 0,也是最小值所以 20Gxhx,则 2ehx当 0x时恒成立函数 f和 g存在唯一的隔离直线 y,故正确故答案为

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1