1、1平行四边形的判定课题 平行四边形的判定课型审核 签字序号学习目标与重难点1使学生掌握用平行四边形的定义判定一个四边形是平行四边形;2理解并掌握用一组对边平行且相等或二组对边分 别相等的四边形是平行四边形3能运这三种方法来证明一个四边形是平行四边形。教学重点和难点重点:平行四边形的判定定理 1 和 2;难点:掌握平行四边形的性质和判定的区别及熟练应用。恰当具体可测媒体运用多媒体课件整合点准确恰当教学思路学案导学具体明晰导语设计(一)复习提问:1. 什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)2. 将以上的性质定理,分别用命题形式叙述出来。 (如果那么)根据平行四边形的定义,我
2、们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?精炼灵活紧扣学习目标板书设计知识结构纲要化2ABCDABCDEF12“幸福课堂”模式教学过程 研讨修改一 平行四边形的判定:方法一(定义法):两组对边分别平行的四边形的平边形。几何语言表达定义法:ABCD,ADBC,四边形 ABCD 是平行四边形解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。设问:若一个四边形有一组对边平行且相等,能否判定这个四 边形也是平行四边形呢?活动一:课本探究内容,并用事准备好的纸条(纸条的长度相等) ,先将纸
3、条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平 行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?设问:我们能否用推理的方法证 明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。 )小结:平行四边形判定方法二:前提:若一个四边形有一组对边平行且相等。结论:这个四边形是一个平行四边形。如图用几何语言表达为:AB=CD 且 ABCD四边形 ABCD 是平行四边形平行且相等可用符号“ ” ,读作“平行且相等” 。AB CD 四边形 ABCD 是平行四边形二例题讲解:例 1:已知:E、F 分别为平行四
4、边形 ABCD 两边AD、BC 的中点,连结 BE、DF求证: 2 图 3分析:今天我们 证明角相等,除了平行线,全等三角形外,又多了一个新方法,可以证明平行四边形对角相等,即只要四边形 EBFD 是平行四边形。由已知平行四边形 ABCD 的性质可得 DE/BF,又1234D CBA4ADBC,E、F 为中点则有 DEBF,根据“一组对边平行且相等的四边形是平行四边形”的判定定理,可得四边形 EBFD 是平行四边形。证明由学生完成。提问:此题还有什么方法, 证明四边形 BEDF 是平行四边形。学生会想到证明 CDFABE,得到 BEDF,利用两组对边相等证明四边形是平行四边形。但应指出第二种方
5、法较第一种方法繁 ,也就是说要找出较简捷的证法,准确地使用判定定理,就要先分析图形的性质,及所具备的条件。活动二:用做好的纸 条拼成一个四边形,其中强调两组对边分别 相等。三。新知探索方法三:两组对边分别相等的四边形是平行四边形。设问:这个命题的前提和结论是什么?已知:四边形 ABCD 中,ABCD,ADBC求证:四边 ABCD 是平行四边形。分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结 BD。易证三角形全等。 (见图 1)板书证明过程。小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:判定二:二组
6、对边分别相等的四边形是平行四边形AB=CD,AD=BC,四边形 ABCD 是平行四 边形练习:课本 P13 练习题第 2 题。练习:2. 已知如图 7,E、F、G、H 分别是平行四边形 ABCD 的边AB、BC、CD、DA 上的点,且 AECG,BFDH。求证:四边形 EFGH 是平行四边形。(让学生板演)图 7四课堂小结ABCDFHEG4今天我们主要研究了利用边的关系来判定平行四边形,注意满足两个条件。的 四 边 形 是 平 行 四 边 形一 组 对 边 平 行 且 相 等两 组 对 边 分 别 相 等两 组 对 边 分 别 平 行 注意:若一组对边平行,另一组对边相等,是不可以判定为平行四边 形的,它是梯形。作业布置:1课本 15 页习题 1,2,3 题反思重建