1、- 1 -曙光中学 20172018 学年第一学期末考试高二年级数学试题卷试卷满分 100 分,考试时间 80 分钟注意事项 :1答题前请在相应答题卷上填写好自己的姓名、班级、座位号等信息2答案须用黑色字迹的签字笔或钢笔写在答题纸上的相应区域内,答案写在本试卷上无效.3. 本试卷 4 页,答题卷 2 页,共 6 页,共 25 题祝同学们 年好运!第 I 卷 (选择题)1、选择题(本大题共 18 小题,每小题 3 分,共 54 分。每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.已知全集 U=1,2,3,4,若 A=1,3,则 CuA= ( ) A.1,2 B.1
2、,4 C.2,3 D.2,42. 已知数列 1, a,5 是等差数列,则实数 a 的值为 ( ) A.2 B.3 C.4 D. 53.计算 lg4+lg25= ( ) A.2 B.3 C.4 D.104.在ABC 中,内角 A,B,C 所对的边分别为 a,b,c,若 a= ,A=60,B=45,则 b 的3长为 ( ) A. B.1 C. D.2225. 已知角 的终边经过点 ,则 ( ) (3,4)PsinA. B. C. D.35 45436. 函数 的定义域为( )2()log(1)fxA. B. C. D.,(0,1)(1,)7.在平面直角坐标系 中,已知直线 的方程为 ,则一点 到直
3、线 的距离是( xOyl2yxOl- 2 -)A. B. C. D. 122228.已知圆 ,圆 ,则圆 与圆 的位置关系是( 21:Cxy22:(3)4)9Cxy1C) A.内含 B.外离 C.相交 D.相切 9.设关于 x 的不等式(ax1)(x +1)0(aR)的解集为x|1x1,则 a 的值是 ( ) A.2 B.1 C.0 D.110不等式组 ,表示的平面区域(阴影部分)是( )0263yx11.函数 是( )xxf2sin1)(A.偶函数且最小正周期为 B.奇函数且最小正周期为 2C.偶函数且最小正周期为 D.奇函数且最小正周期为12.设向量 若 ,(2,)b(4,)c(,).ax
4、yxyR ba则 的最小值是 ( )|cA. B. C. D. 552513.函数 f( )= 1n| |的图像可能是( )x- 3 -14.在ABC 中,若 AB=2,AC=3,A=60,则 BC 的长为 ( )A. B. C.3 D.1913 715. 已知直线 2x+y+2+ (2y)=0 与两坐标轴围成一个三角形,该三角形的面积记为 S( )当 (1,+)时, S( )的最 小值是 ( )A.12 B.10 C.8 D.616.设椭圆 : 的焦点为 F1,F 2,若椭圆 上存在点 P,使P F1F2是21(0)yxab以 F1P 为底边的等腰三角形,则椭圆 的离心率的取值范围是 ( )
5、A. B. C. D.(0,)21(0,)3(,1)21(,)317.正实数 x,y 满足 x+y=1,则 的最小值是( )yxA.3+ B.2+2 C.5 D.222118.已知平面向量 满足 , ,其中 为不共线的单位向量.,ab3412()beR12,e若对符合上述条件的任意向量 恒有 ,则 夹角的最小值为( ),a3412,A. B. C. D. 6356第卷(非选择题)2、填空题(本大题共 4 小题,每空 3 分,共 15 分。 )19. 已知抛物线 过点 ,则 ,抛物线方程是 .pxy2),1(Ap20. 设函数 .若函数 的图象过点 ,则 的值为_.()faR()fx(3,18)
6、a21.设函数 f(x)= ,若 f(2)=3,则实数 a 的值为 .2,034x- 4 -22.如图,已知 ABAC,AB=3,AC= ,圆 A 是以 A 为圆心半径3为 1 的圆,圆 B 是以 B 为圆心的圆。设点 P,Q 分别为圆 A,圆B 上的动点,且 ,则 的取值范围是 12APC.QCBAP(第 22 题图)三解答题:(本大题共 3 小题,共 31 分)22.(10 分)已知四个数,前三个数成等比数列,和为 ,后三个数成等差数列,和为 ,求此1912四个数.23.(10 分)已知直线 xy+3=0 与圆心为(3,4)的圆 C 相交,截得的弦长为 2 (1)求圆 C 的方程;(2)设
7、 Q 点的坐标为(2,3) ,且动点 M 到圆 C 的切线长与|MQ|的比值为常数 k(k0) 若动点 M 的轨迹是一条直线,试确定相应的 k 值,并求出该直线的方程24.(本题 11 分)已知抛物线 C:y 2=2px 过点 A(1,1).求抛物线 C 的方程.过点 P(3,1)的直线与抛物线 C 交于 M,N 两个不同的点 (均与点 A 不重合),设直线AM,AN 的斜率分别为 k1,k 2,求证:k 1k2为定值- 5 -一、选择题:(本大题有 18 个小题,每小题 3 分,共 54 分。 )题 号 1 2 3 4 5 6 7 8 9 10答 案 D B A C C D C B D B题
8、号 11 12 13 14 15 16 17 18答案 A B D D C D B B二填空题:(本大题共 4 小题,每空 3 分,共 15 分)19. 2 20. 10 1x21. 2 22. 1,11 三解答题:(本大题共 3 小题,共 31 分)22.(10 分)已知四个数,前三个数成等比数列,和为 ,后三个数成等差数列,和为 ,求此912四个数.依题意可设这四个数分别为: , ,4, ,2(4)d4d则 由前三个数和为 19 可列方程得,整理 得, ,2(4)19d2180解得 或 .4这四个数分别为:25,-10,4,18 或 9,6,4,2.23.(10 分)已知直线 xy+3=0
9、 与圆心为(3,4)的圆 C 相交,截得的弦长为 2 (1)求圆 C 的方程;(2)设 Q 点的坐标为(2,3) ,且动点 M 到圆 C 的切线长与|MQ|的比值为常数 k(k0) 若动点M 的轨迹是一条直线,试确定相应的 k 值,并求出该直线的方程【分析】 (1)求出圆心 C 到直线 l 的距离,利用截得的弦长为 2 求得半径的值,可得圆 C的方程;(2)设动点 M(x,y) ,则由题意可得 =k,即 =k,化简可得 (k21)x2+(k21)y2+(64k2)x+(86k2)y+13k29=0,若动点 M 的轨迹方程是直线,则 k21=0,即可得出结论班级: 姓名: 座位号: 密封线曙光中
10、学 20172018 学年第一学期期末卷高二年级数学答案- 6 -【解答】解:(1)圆心 C 到直线 l 的距离为 = ,截得的弦长为 2 ,半径为 2,圆 C:(x3)2+(y4)2=4;(2)设动点 M(x,y) ,则由题意可得 =k,即 =k,化简可得 (k21)x2+(k21)y2+(64k2)x+(86k2)y+13k221=0,若动点 M 的轨迹方程是直线,则 k21=0,k=1,直线的方程为 x+y4=024.(本题 11 分)已知抛物线 C:y 2=2px 过点 A(1,1).求抛物线 C 的方程.过点 P(3,1)的直线与抛物线 C 交于 M,N 两个不同的点 (均与点 A 不重合),设直线AM,AN 的斜率分别为 k1,k 2,求证:k 1k2为定值24.解:A 在抛物线上1=2p 即 p= 21抛物线 C 的方程为 xy2令 M(x1,y1),N(x2,y2)MN:m(y+1)=x-3 代入 可得2032myy1+y2=m, y1*y2=-m-3, x1+x2=m2+2m+6, x1*x2= (m+3)2又 k1k2= 1)(121221 xxyyx= 为定值46)3(2 mm
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1