ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:309.50KB ,
资源ID:1192915      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1192915.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((全国通用版)2019高考数学二轮复习板块四考前回扣回扣5概率与统计学案文.doc)为本站会员(吴艺期)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

(全国通用版)2019高考数学二轮复习板块四考前回扣回扣5概率与统计学案文.doc

1、1回扣 5 概率与统计1牢记概念与公式(1)古典概型的概率计算公式P(A) .事 件 A包 含 的 基 本 事 件 数 m基 本 事 件 总 数 n(2)互斥事件的概率计算公式P(A B) P(A) P(B)(3)对立事件的概率计算公式P( )1 P(A)A(4)几何概型的概率计算公式P(A) .构 成 事 件 A的 区 域 长 度 面 积 或 体 积 试 验 的 全 部 结 果 所 构 成 的 区 域 长 度 面 积 或 体 积 2抽样方法简单随机抽样、分层抽样、系统抽样(1)从容量为 N 的总体中抽取容量为 n 的样本,则每个个体被抽到的概率都为 .nN(2)分层抽样实际上就是按比例抽样,

2、即按各层个体数占总体的比确定各层应抽取的样本容量3统计中四个数据特征(1)众数:在样本数据中,出现次数最多的那个数据(2)中位数:在样本数据中,将数据按大小排列,位于最中间的数据如果数据的个数为偶2数,就取中间两个数据的平均数作为中位数(3)平均数:样本数据的算术平均数,即 (x1 x2 xn)x1n(4)方差与标准差方差: s2 (x1 )2( x2 )2( xn )21n x x x标准差:s .1nx1 x2 x2 x2 xn x24线性回归线性回归方程 x 一定过样本点的中心( , )y b a x y5独立性检验利用随机变量 K2 来判断“两个分类变量有关系 ”的方法称为独立nad

3、bc2a bc da cb d性检验如果 K2的观测值 k 越大,说明“两个分类变量有关系”的可能性越大1应用互斥事件的概率加法公式,一定要注意首先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和2正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件, “互斥”是“对立”的必要不充分条件3混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错1某学校有男学生 400 名,女学生 600 名为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生 40 名,女学生

4、60 名进行调查,则这种抽样方法是( )A抽签法 B随机数法C系统抽样法 D分层抽样法答案 D解析 总体由男生和女生组成,比例为 40060023,所抽取的比例也是 23,故拟从3全体学生中抽取 100 名学生进行调查,采用的抽样方法是分层抽样法,故选 D.2200 辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数,中位数的估计值为( )A62,62.5 B65,62C65,63.5 D65,65答案 D解析 选出直方图中最高的矩形求出其底边的中点即为众数;求出从左边开始小矩形的面积和为 0.5 对应的横坐标即为中位数最高的矩形为第三个矩形,所以时速的众数为 65;前两个矩形

5、的面积为(0.010.02)100.3,由于 0.50.30.2,则 105,中位0.20.4数为 60565.故选 D.3同时投掷两枚硬币一次,那么互斥而不对立的两个事件是( )A “至少有 1 个正面朝上” , “都是反面朝上”B “至少有 1 个正面朝上” , “至少有 1 个反面朝上”C “恰有 1 个正面朝上” , “恰有 2 个正面朝上”D “至少有 1 个反面朝上” , “都是反面朝上”答案 C解析 同时投掷两枚硬币一次,在 A 中, “至少有 1 个正面朝上”和“都是反面朝上”不能同时发生,且“至少有 1 个正面朝上”不发生时, “都是反面朝上”一定发生,故 A 中两个事件是对

6、立事件;在 B 中,当两枚硬币恰好一枚正面朝上,一枚反面朝上时, “至少有 1 个正面朝上” , “至少有 1 个反面朝上”能同时发生,故 B 中两个事件不是互斥事件;在 C 中,“恰有 1 个正面朝上” , “恰有 2 个正面朝上”不能同时发生,且其中一个不发生时,另一个有可能发生也有可能不发生,故 C 中的两个事件是互斥而不对立的两个事件;在 D 中,当两枚硬币同时反面朝上时, “至少有 1 个反面朝上” , “都是反面朝上”能同时发生,故 D 中两个事件不是互斥事件故选 C.4采用系统抽样方法从学号为 1 到 50 的 50 名学生中选取 5 名参加测试,则所选 5 名学生的学号可能是(

7、 )A1,2,3,4,5 B5,26,27,38,494C2,4,6,8,10 D5,15,25,35,45答案 D解析 采用系统抽样的方法时,即将总体分成均衡的若干部分,分段的间隔要求相等,间隔一般为总体的个数除以样本容量,据此即可得到答案采用系统抽样间隔为 10,只有 D505答案中的编号间隔为 10.故选 D.5甲、乙两人下棋,两人下成和棋的概率是 ,甲获胜的概率是 ,则甲不输的概率为( )12 13A. B.56 25C. D.16 13答案 A解析 甲不输的概率为 .故选 A.12 13 566 A 是圆上固定的一定点,在圆上其他位置任取一点 B,连接 A, B 两点,它是一条弦,它

8、的长度大于等于半径长度的概率为( )A. B.23 14C. D.56 12答案 A解析 在圆上其他位置任取一点 B,设圆的半径为 R,则 B 点位置所有情况对应的弧长为圆的周长 2 R,其中满足条件 AB 的长度大于等于半径长度的对应的弧长为 2 R,则弦 AB23的长度大于等于半径长度的概率 P .故选 A.232 R2 R 237投掷两颗骰子,得到其向上的点数分别为 m 和 n,则复数( m ni)(n mi)为实数的概率是( )A. B.13 14C. D.16 112答案 C解析 投掷两颗骰子,得到其向上的点数分别为 m 和 n,记作( m, n),共有 6636(种)结果( m n

9、i)(n mi)2 mn( n2 m2)i 为实数,应满足 m n,有 6 种情况,5所以所求概率为 ,故选 C.636 168一个袋子中有 5 个大小相同的球,其中 3 个白球,2 个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( )A. B.35 310C. D.12 625答案 B解析 设 3 个白球分别为 a1, a2, a3,2 个黑球分别为 b1, b2,则先后从中取出 2 个球的所有可能结果为( a1, a2),( a1, a3),( a1, b1),( a1, b2),( a2, a3),( a2, b1),( a

10、2, b2),(a3, b1),( a3, b2),( b1, b2),( a2, a1),( a3, a1),( b1, a1),( b2, a1),( a3, a2),(b1, a2),( b2, a2),( b1, a3),( b2, a3),( b2, b1),共 20 种其中满足第一次为白球、第二次为黑球的有( a1, b1),( a1, b2),( a2, b1),( a2, b2),( a3, b1),( a3, b2),共 6 种,故所求概率为 .620 3109为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区 5 户家庭,得到如下统计数据表:收入 x(万元 ) 8

11、.2 8.6 10.0 11.3 11.9支出 y(万元 ) 6.2 7.5 8.0 8.5 9.8根据上表可得线性回归方程 x ,其中 0.76, .据此估计,该社区一户年收y b a b a y b x入为 15 万元的家庭的年支出为( )A11.4 万元 B11.8 万元 C12.0 万元 D12.2 万元答案 B解析 由题意知, 10,x8.2 8.6 10.0 11.3 11.95 8,y6.2 7.5 8.0 8.5 9.85 80.76100.4,a 线性回归方程 0.76 x0.4,y 当 x15 时, 0.76150.411.8(万元)y 10在区间,内随机取出两个数分别记为

12、 a, b,则函数 f(x) x22 ax b2 26有零点的概率为( )A1 B1 8 4C1 D1 2 34答案 B解析 由函数 f(x) x22 ax b2 2有零点,可得 (2 a)24( b2 2)0,整理得 a2 b2 2,如图所示,(a, b)可看成坐标平面上的点,试验的全部结果构成的区域为 ( a, b)| a, b,其面积 S (2) 24 2.事件 A 表示函数 f(x)有零点,所构成的区域为 M( a, b)|a2 b2 2,即图中阴影部分,其面积为 SM4 2 3,故 P(A) 1 ,故选 B.SMS 4 2 34 2 411某班运动队由足球运动员 18 人、篮球运动员

13、 12 人、乒乓球运动员 6 人组成(每人只参加一项),现从这些运动员中抽取一个容量为 n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为 n1 时,若采用系统抽样法,则需要剔除 1 个个体,那么样本容量 n 为_答案 6解析 总体容量为 6121836.当样本容量为 n 时,由题意可知,系统抽样的抽样距为,分层抽样的抽样比是 ,则采用分层抽样法抽取的乒乓球运动员人数为 6 ,篮36n n36 n36 n6球运动员人数为 12 ,足球运动员人数为 18 ,可知 n 应是 6 的倍数,36 的约n36 n3 n36 n2数,故 n6,12,18.当样本容量为 n1 时,

14、剔除 1 个个体,此时总体容量为 35,系统抽样的抽样距为 ,因为 必须是整数,所以 n 只能取 6,即样本容量 n 为 6.35n 1 35n 112已知样本 9,10,11, x, y 的平均数是 10,标准差是 ,则 xy_.27答案 96解析 根据平均数及方差的计算公式,可得 91011 x y105,即 x y20,因为标准差为 ,方差为 2,2所以 (910) 2(1010) 2(1110) 2( x10) 2( y10) 22,即( x10) 2( y10)1528,解得 x8, y12 或 x12, y8,则 xy96.13已知 x, y 的取值如表所示:x 0 1 3 4y

15、2.2 4.3 4.8 6.7从散点图分析, y 与 x 线性相关,且 0.95 x ,则 _.y a a 答案 2.6解析 根据表中数据得 2, 4.5,又由线性回归方程知,其斜率为 0.95,x y截距 4.50.9522.6.a 14在区间1,5和2,4内分别取一个数,记为 a, b,则方程 1 表示焦点在 x 轴上x2a2 y2b2且离心率小于 的椭圆的概率为_32答案 1532解析 当方程 1 表示焦点在 x 轴上且离心率小于 的椭圆时,x2a2 y2b2 32有Error!即Error! 化简得Error!又 a1,5, b2,4,画出满足不等式组的平面区域,如图阴影部分所示,求得

16、阴影部分面积为S 阴影 (13)2 1 .12 12 12 154故 P .S阴 影24 1532815如图是某市 2017 年 3 月 1 日至 16 日的空气质量指数趋势图,空气质量指数(AQI)小于100 表示空气质量优良,空气质量指数大于 200 表示空气重度污染(1)若某人随机选择 3 月 1 日至 3 月 14 日中的某一天到达该市,到达后停留 3 天(到达当日算 1 天),求此人停留期间空气重度污染的天数为 1 的概率;(2)若某人随机选择 3 月 7 日至 3 月 12 日中的 2 天到达该市,求这 2 天中空气质量恰有 1 天是重度污染的概率解 (1)设 Ai表示事件“此人于

17、 3 月 i 日到达该市”( i1,2,14)依题意知, P(Ai) ,且 Ai Aj( i j)114设 B 为事件“此人停留期间空气重度污染的天数为 1”,则 B A3 A5 A6 A7 A10,所以 P(B) P(A3) P(A5) P(A6) P(A7) P(A10) ,514即此人停留期间空气重度污染的天数为 1 的概率为 .514(2)记 3 月 7 日至 3 月 12 日中重度污染的 2 天为 E, F,另外 4 天记为 a, b, c, d,则 6 天中选 2 天到达的基本事件如下:( a, b),( a, c),( a, d),( a, E),( a, F),( b, c),

18、(b, d),( b, E),( b, F),( c, d),( c, E),( c, F),( d, E),( d, F),( E, F),共 15 种,其中 2 天恰有 1 天是空气质量重度污染包含( a, E),( a, F),( b, E),( b, F),( c, E),(c, F),( d, E),( d, F)这 8 个基本事件,故所求事件的概率为 .81516(2017全国)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记 A 表示事件“旧养殖法的箱产量低于 50 kg,估计 A 的概率;9(2)填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖方法有关;箱产量6.635,故有 99%的把握认为箱产量与养殖方法有关(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在 50 kg 到 55 kg之间,旧养殖法的箱产量平均值(或中位数)在 45 kg 到 50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1