ImageVerifierCode 换一换
格式:PPT , 页数:40 ,大小:2.85MB ,
资源ID:1199311      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1199311.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((福建专用)2019高考数学一轮复习第八章立体几何8.1空间几何体的结构及其三视图和直观图课件理新人教A版.ppt)为本站会员(tireattitude366)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

(福建专用)2019高考数学一轮复习第八章立体几何8.1空间几何体的结构及其三视图和直观图课件理新人教A版.ppt

1、第八章 立体几何,8.1 空间几何体的结构 及其三视图和直观图,-3-,知识梳理,考点自测,1.空间几何体的结构特征,平行且相等,全等,任意多边形,有一个公共顶点的三角形,相似,-4-,知识梳理,考点自测,矩形,直角边,直角腰,圆锥,半圆面或圆面,-5-,知识梳理,考点自测,2.空间几何体的三视图 (1)几何体的三视图包括 ,分别是从几何体的 方、 方、 方观察几何体画出的轮廓线. (2)三视图的画法 基本要求: , , . 画法规则: 一样高, 一样长,_ 一样宽;看不到的轮廓线画 线.,正视图、侧视图、俯视图,正前,正左,正上,长对正,高平齐,宽相等,正侧,正俯,侧俯,虚,-6-,知识梳理

2、,考点自测,3.空间几何体的直观图 (1)画法:常用 画法. (2)规则 原图形中x轴、y轴、z轴两两垂直,直观图中,x轴、y轴的夹角为 ,z轴与x轴 . 原图形中平行于坐标轴的线段,在直观图中仍平行于坐标轴.平行于x轴和z轴的线段长度在直观图中 ,平行于y轴的线段长度在直观图中 .,斜二测,45(或135),垂直,保持原长度不变,变为原来的一半,-7-,知识梳理,考点自测,1.常见旋转体的三视图 (1)球的三视图都是半径相等的圆. (2)底面与水平面平行放置的圆锥的主视图和左视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的主视图和左视图为全等的等腰梯形. (4)底面与水平面平行放

3、置的圆柱的主视图和左视图为全等的矩形.,-8-,知识梳理,考点自测,-9-,知识梳理,考点自测,2,3,4,1,5,1.判断下列结论是否正确,正确的画“”,错误的画“”. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( ) (2)棱台是由平行于棱锥底面的平面截棱锥所得的平面与底面之间的部分.( ) (3)夹在圆柱的两个平行截面间的几何体还是圆柱.( ) (4)画几何体的三视图时,看不到的轮廓线应画虚线.( ) (5)在用斜二测画法画水平放置的A时,若A的两边分别平行于x轴和y轴,且A=90,则在直观图中A=45.( ),答案,-10-,知识梳理,考点自测,2,3,4,1,5,2.

4、如图为某个几何体的三视图,根据三视图可以判断这个几何体为( )A.圆锥 B.三棱锥 C.三棱柱 D.三棱台,答案,解析,-11-,知识梳理,考点自测,2,3,4,1,5,3.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( ),答案,解析,4.已知某组合体的正视图与侧视图相同,如图所示,其中AB=AC,四边形BCDE为矩形,则该组合体的俯视图可以是 .(把你认为正确的图的序号都填上),-12-,知识梳理,考点自测,2,3,4,1,5,答案,解析,-13-,知识梳理,考点自测,2,3,4,1,5,5.利用斜二测画法得到的: 三角形的

5、直观图一定是三角形; 正方形的直观图一定是菱形; 等腰梯形的直观图可以是平行四边形; 菱形的直观图一定是菱形. 以上结论正确的个数是 .,答案,解析,-14-,考点1,考点2,考点3,例1(1)下列结论正确的是( ) A.各个面都是三角形的几何体是三棱锥 B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线 (2)以下命题: 以直角三角形的一边为轴旋转一周所得的旋转体是圆锥; 以直角梯形的一腰为轴旋转一周所得的旋转体是圆台; 圆柱、圆锥、圆台的

6、底面都是圆; 一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题的个数为( ) A.0 B.1 C.2 D.3,-15-,考点1,考点2,考点3,答案: (1)D (2)A 解析: (1)A错误,如图是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图,若ABC不是直角三角形,或ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.,-16-,考点1,考点2,考点3,(2)命题错,因为这条边若是直角三角形的斜边,则得不到圆锥;命题错,因为这条

7、腰必须是垂直于两底的腰;命题错,因为圆柱、圆锥、圆台的底面都是圆面;命题错,必须用平行于圆锥底面的平面截圆锥才可以.,-17-,考点1,考点2,考点3,思考如何熟练应用空间几何体的结构特征? 解题心得1.要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力. 2.紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后依据题意判定. 3.通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.,-18-,考点1,考点2,考点3,对点训练1(1)以下关于几何体

8、的三视图的论述中,正确的是( ) A.球的三视图总是三个全等的圆 B.正方体的三视图总是三个全等的正方形 C.水平放置的正四面体的三视图都是正三角形 D.水平放置的圆台的俯视图是一个圆 (2)设有以下命题: 底面是平行四边形的四棱柱是平行六面体; 底面是矩形的平行六面体是长方体; 四棱锥的四个侧面都可以是直角三角形; 棱台的相对侧棱延长后必交于一点; 直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥. 其中真命题的序号是 .,答案: (1)A (2),-19-,考点1,考点2,考点3,解析: (1)画几何体的三视图要考虑视角,但对于球,无论选择怎样的视角,其三视图总是三个全等的圆.

9、(2)命题符合平行六面体的定义,故命题是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题是错误的;命题正确,如图(1),PD平面ABCD,其中底面ABCD为矩形,可证明PAB,PCB为直角,这样四个侧面都是直角三角形;命题由棱台的定义知是正确的;命题错误,当以斜边所在直线为旋转轴时,其余两边旋转形成的曲面所围成的几何体不是圆锥.如图(2)所示,它是由两个同底圆锥组成的.,-20-,考点1,考点2,考点3,例2(1)右图是水平放置的某个三角形的直观图,D是ABC中BC边的中点,且ADy轴,AB,AD,AC三条线段对应原图形中的线段AB,AD,AC,则( ) A.最长的是AB,最短的是

10、AC B.最长的是AC,最短的是AB C.最长的是AB,最短的是AD D.最长的是AD,最短的是AC,-21-,考点1,考点2,考点3,(2)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( ),答案,解析,-22-,考点1,考点2,考点3,思考用斜二测画法画直观图的法则和技巧有哪些? 解题心得1.在斜二测画法中,要确定关键点及关键线段的位置,注意“三变”与“三不变”;平面图形的直观图,其面积与原图形的面积的关系是 2.在原图形中与x轴或y轴平行的线段在直观图中与x轴或y轴平行,原图中不与坐标轴平行的线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一

11、些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.,-23-,考点1,考点2,考点3,对点训练2(1)用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 cm2,则原平面图形的面积为( )(2)已知正三角形ABC的边长为a,则ABC的平面直观图ABC的面积为( ),答案: (1)C (2)D,-24-,考点1,考点2,考点3,解析: (1)依题意可知BAD=45,则原平面图形为直角梯形,上、下底边的长分别与BC,AD相等,高为梯形ABCD的高的2 倍,所以原平面图形的面积为8 cm2. (2)如图,所示的平面图形和直观图.,

12、-25-,考点1,考点2,考点3,考向1 由空间几何体的直观图识别三视图 例3(1)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如右图,图中四边形是为体现其直观性所作的辅助线,当其正视图和侧视图完全相同时,它的主视图和俯视图分别可能是( )A.a,b B.a,c C.c,b D.b,d,-26-,考点1,考点2,考点3,(2)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )思考由直观图识别三视图时应注意什么问题?,答案,解析,-27

13、-,考点1,考点2,考点3,考向2 由空间几何体的三视图还原直观图 例4(1)三视图如图所示的几何体是( )A.三棱锥 B.四棱锥 C.四棱台 D.三棱台,-28-,考点1,考点2,考点3,(2)(2017全国,理7)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.16 思考由三视图还原几何体的直观图的基本步骤有哪些?,-29-,考点1,考点2,考点3,答案: (1)B (2)B,解析: (1)由三视图可知几何体如图,故选B.(2)

14、由三视图可还原出几何体的直观图如图所示.该五面体中有两个侧面是全等的直角梯形,且该直角梯形的上底长为2,下底长为4,高为2,则S梯=(2+4)22=6,所以这些梯形的面积之和为12.,-30-,考点1,考点2,考点3,思考如何由三视图的两视图推测另一视图?,答案,解析,考向3 由三视图的两视图推测另一视图 例5已知一三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( ),-31-,考点1,考点2,考点3,解题心得1.由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚

15、线表示. 2.由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图. 3.由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,看看给出的部分三视图是否符合.,-32-,考点1,考点2,考点3,对点训练3(1)将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为( ),-33-,考点1,考点2,考点3,(2)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),

16、(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ),-34-,考点1,考点2,考点3,(3)(2017河北邯郸二模,理8)如图是某几何体的三视图,则该几何体的体积为( )A.12 B.15 C.18 D.21,-35-,考点1,考点2,考点3,(4)(2017山东潍坊二模,理8)一个几何体的三视图如 图所示,其中俯视图是半径为r的圆,若该几何体的体积为9,则它的表面积是( )A.27 B.36 C.45 D.54,-36-,考点1,考点2,考点3,(5)一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( ),-37-,考点1,

17、考点2,考点3,答案: (1)D (2)A (3)C (4)C (5)C,解析: (1)根据几何体的结构特征进行分析即可. (2)如图所示,该四面体在空间直角坐标系O-xyz的图象为下图.,-38-,考点1,考点2,考点3,(3)由已知中的三视图可得该几何体是一个长、宽、 高分别为4,3,3的长方体切去一半得到的,其直观图如 下所示.,-39-,考点1,考点2,考点3,1.要掌握棱柱、棱锥的结构特征,计算问题往往转化到一个三角形中进行解决. 2.旋转体要抓住“旋转”的特点,弄清底面、侧面及其展开图的形状. 3.三视图的画法 (1)实线、虚线的画法:分界线和可见轮廓线用实线,看不见的轮廓线用虚线; (2)理解“长对正、高平齐、宽相等”.,-40-,考点1,考点2,考点3,1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点. 2.空间几何体不同放置时其三视图不一定相同. 3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易混淆实虚线.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1