ImageVerifierCode 换一换
格式:PPT , 页数:31 ,大小:1.70MB ,
资源ID:1199340      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1199340.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((福建专用)2019高考数学一轮复习第四章三角函数、解三角形4.7解三角形课件理新人教A版.ppt)为本站会员(syndromehi216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

(福建专用)2019高考数学一轮复习第四章三角函数、解三角形4.7解三角形课件理新人教A版.ppt

1、4.7 解三角形,-2-,知识梳理,考点自测,1.正弦定理和余弦定理 在ABC中,若角A,B,C所对的边分别是a,b,c,则,-3-,知识梳理,考点自测,-4-,知识梳理,考点自测,-5-,知识梳理,考点自测,3.实际问题中的常用角 (1)仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线 的角叫做仰角,目标视线在水平视线 的角叫做俯角(如图). (2)方向角:相对于某正方向的水平角,如南偏东30、北偏西45、西偏北60等. (3)方位角:指从正北方向 转到目标方向线的水平角,如点B的方位角为(如图). (4)坡度:坡面与水平面所成的二面角的度数.,上方,下方

2、,顺时针,-6-,知识梳理,考点自测,1.在ABC中,常有以下结论 (1)A+B+C=. (2)在三角形中大边对大角,大角对大边. (3)任意两边之和大于第三边,任意两边之差小于第三边. (4)sin(A+B)=sin C;cos(A+B)=-cos C;tan(A+B)=-tan C;(5)tan A+tan B+tan C=tan Atan Btan C. (6)ABabsin Asin Bcos A0时,可知A为锐角; 当b2+c2-a2=0时,可知A为直角; 当b2+c2-a20时,可知A为钝角.,-7-,知识梳理,考点自测,2,3,4,1,5,1.判断下列结论是否正确,正确的画“”,

3、错误的画“”. (1)在ABC中,已知a,b和角B,能用正弦定理求角A;已知a,b和角C,能用余弦定理求边c.( ) (2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( ) (3)在ABC中,sin Asin B的充分不必要条件是AB.( ) (4)在ABC中,a2+b2c2是ABC为钝角三角形的充分不必要条件.( ) (5)在ABC的角A,B,C,边长a,b,c中,已知任意三个可求其他三个.( ),答案,-8-,知识梳理,考点自测,2,3,4,1,5,答案,解析,-9-,知识梳理,考点自测,2,3,4,1,5,答案,解析,-10-,知识梳理,考点自测,2,3,4,1,5,4.A

4、BC的内角A,B,C的对边分别为a,b,c.已知C=60,b= ,c=3,则A= .,答案,解析,-11-,知识梳理,考点自测,2,3,4,1,5,5.ABC的内角A,B,C的对边分别为a,b,c,若2bcos B=acos C+ccos A,则B= .,答案,解析,-12-,考点1,考点2,考点3,考点4,例1(2017全国,理17)ABC的内角A,B,C的对边分别为a,b,c.已知ABC的面积为 (1)求sin Bsin C; (2)若6cos Bcos C=1,a=3,求ABC的周长.,答案,-13-,考点1,考点2,考点3,考点4,思考已知怎样的条件能用正弦定理解三角形?已知怎样的条件

5、能用余弦定理解三角形? 解题心得1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形.正弦定理的形式多样,其中a=2Rsin A,b=2Rsin B,c=2Rsin C能够实现边角互化. 2.已知两边和它们的夹角、已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形,在运用余弦定理时,要注意整体思想的运用. 3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.,-14-,考点1,考点2,考点3,考点4,对点训练1(2017北京,理15)在ABC中,A=60,c= a. (1)求sin

6、 C的值; (2)若a=7,求ABC的面积.,答案,-15-,考点1,考点2,考点3,考点4,例2在ABC中,a,b,c分别为内角A,B,C的对边,且2asin A=(2b-c)sin B+(2c-b)sin C. (1)求角A的大小; (2)若sin B+sin C= ,试判断ABC的形状.,解: (1)由2asin A=(2b-c)sin B+(2c-b)sin C及正弦定理, 得2a2=(2b-c)b+(2c-b)c, 即bc=b2+c2-a2,A=60.,-16-,考点1,考点2,考点3,考点4,即sin(B+30)=1. 0B120,30B+30150. B+30=90,即B=60.

7、 A=B=C=60, ABC为等边三角形.,-17-,考点1,考点2,考点3,考点4,思考判断三角形的形状时主要有哪些方法? 解题心得判断三角形的形状时主要有以下两种方法: (1)利用正弦定理、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状; (2)利用正弦定理、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角恒等变换,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=这个结论.,-18-,考点1,考点2,考点3,考点4,对点训练2(2017云南楚雄州一模,理17)如图,在ABC中,(1)若BAC=,求AB和BC的长.(结果

8、用表示) (2)当AB+BC=6时,试判断ABC的形状.,-19-,考点1,考点2,考点3,考点4,-20-,考点1,考点2,考点3,考点4,-21-,考点1,考点2,考点3,考点4,例3(2017全国,理17)ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2 . (1)求cos B; (2)若a+c=6,ABC的面积为2,求b.,-22-,考点1,考点2,考点3,考点4,-23-,考点1,考点2,考点3,考点4,思考在三角形中进行三角变换要注意什么? 解题心得1.在三角形中进行三角变换要注意隐含条件A+B+C=,使用这个隐含条件可以减少未知数的个数. 2.在解三

9、角形问题中,因为面积公式 中既有边又有角,所以要和正弦定理、余弦定理联系起来;要灵活运用正弦定理、余弦定理实现边角互化,为三角变换提供了条件.,-24-,考点1,考点2,考点3,考点4,对点训练3(2017吉林三模,理17)已知函数f(x)=cos 2x+2sin2x+2sin x.,答案,-25-,考点1,考点2,考点3,考点4,例4设ABC三个角A,B,C的对边分别为a,b,c,向量p=(a,2b),q=(sin A,1),且pq. (1)求B的大小; (2)若ABC是锐角三角形,m=(cos A,cos B),n=(1,sin A-cos Atan B),求mn的取值范围.,解: (1)

10、p=(a,2b),q=(sin A,1),且pq,a-2bsin A=0, 由正弦定理得sin A-2sin Bsin A=0. A,B,C是ABC的内角,-26-,考点1,考点2,考点3,考点4,-27-,考点1,考点2,考点3,考点4,答案,-28-,考点1,考点2,考点3,考点4,例5如图,一辆汽车在一条水平的公路上向正西方向行驶,到A处时测得公路北侧一山脚C在西偏北30的方向上,行驶600 m后到达B处,测得此山脚C在西偏北75的方向上,山顶D的仰角为30,则此山的高度CD= m.,答案,解析,-29-,考点1,考点2,考点3,考点4,思考利用正弦定理、余弦定理解决实际问题的一般思路是

11、什么? 解题心得利用正弦定理、余弦定理解决实际问题的一般思路: (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解; (2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,再逐步求解其他三角形,有时需设出未知量,根据条件列出方程(组),解方程(组)得出所要求的解.,-30-,考点1,考点2,考点3,考点4,对点训练5如图,小明同学在山顶A处观测到,一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A处测得公路上B,C两点的俯角分别为30,45,且BAC=135.若山高AD=100 m,汽车从点B到

12、点C历时14 s,则这辆汽车的速度为 m/s.(精确到0.1 m/s,参考数据:,答案,解析,-31-,考点1,考点2,考点3,考点4,1.正弦定理和余弦定理其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系. 2.在已知关系式中,既含有边又含有角,通常的解题思路:先将角都化成边或将边都化成角,再结合正弦定理、余弦定理即可求解. 3.在ABC中,已知a,b和A,利用正弦定理时,会出现解的不确定性,一般可根据“大边对大角”来取舍.1.在解三角形中,三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围,确定三角函数值的符号,防止出现增解等扩大范围的现象. 2.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1