ImageVerifierCode 换一换
格式:PPTX , 页数:33 ,大小:1.39MB ,
资源ID:1207153      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1207153.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版高考数学新设计大一轮复习第四章三角函数、解三角形第3节两角和与差的正弦、余弦和正切公式课件理新人教A版.pptx)为本站会员(孙刚)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2020版高考数学新设计大一轮复习第四章三角函数、解三角形第3节两角和与差的正弦、余弦和正切公式课件理新人教A版.pptx

1、第3节 两角和与差的正弦、余弦和正切公式,最新考纲 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).,知 识 梳 理,1.两角和与差的正弦、余弦和正切公式,sin()_. cos()_.,sin cos cos sin ,cos cos sin sin ,2.二倍角的正弦、余弦、正切公式,sin 2_. cos 2_.,2sin

2、cos ,cos2sin2,2cos21,12sin2,微点提醒,1.tan tan tan()(1tan tan ).,基 础 自 测,1.判断下列结论正误(在括号内打“”或“”),(1)两角和与差的正弦、余弦公式中的角,是任意的.( ) (2)存在实数,使等式sin()sin sin 成立.( ),(4)存在实数,使tan 22tan .( ),答案 (1) (2) (3) (4),答案 C,答案 B,5.(2019南昌一模)已知角的终边经过点P(sin 47,cos 47),则sin(13)( ),解析 由三角函数定义,sin cos 47,cos sin 47, 则sin(13)sin

3、 cos 13cos sin 13 cos 47cos 13sin 47sin 13,答案 A,考点一 三角函数式的化简,【例1】 (1)化简:sin()cos()cos()sin()_.,解析 (1)sin()cos()cos()sin() sin()cos ()cos()sin() sin()()sin().,答案 (1)sin() (2)cos ,规律方法 1.三角函数式的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”、“遇到根式一般要升

4、幂”等. 2.化简三角函数式的常见方法有弦切互化,异名化同名,异角化同角,降幂与升幂等.,【训练1】 (1)cos()cos sin()sin ( ),A.sin(2) B.sin C.cos(2) D.cos ,解析 (1)cos()cos sin()sin cos()cos .,考点二 三角函数式的求值 多维探究 角度1 给角(值)求值,求cos 2的值; 求tan()的值.,因为,为锐角,所以(0,).,因此tan()2.,角度2 给值求角,由()得cos cos(),规律方法 1.“给角求值”、“给值求值”问题求解的关键在于“变角”,使其角相同或具有某种关系,借助角之间的联系寻找转化方

5、法.,A.1 B.2 C.1 D.2,cos cos()cos()cos sin()sin ,考点三 三角恒等变换的简单应用,(1)求函数f(x)的最小正周期;,因为图象关于直线x对称,,规律方法 1.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.,(1)求f(x)的最小正周期;,思维升华 1.重视三角函数的“三变”:“三变”是指“变角、变名、变式”.(1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等. 2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.,易错防范 1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升幂、降幂的灵活运用,要注意“1”的各种变通.,3.在三角求值时,往往要借助角的范围确定三角函数值的符号或所求角的三角函数的名称.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1