1、1专题 54 立体几何 空间几何体的三视图【考点讲解】1、具本目标:能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).二、知识概述:1.空间几何体的直观图简单几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面:在已知 图形中取互相垂直的 x 轴、 y 轴,两轴相交于点 O,画直观图时,把它们画成对应的 x轴、 y轴,两轴
2、相交于点 O,且使 x O y45或 135,已知图形中平行于 x 轴、 y 轴的线段,在直观图中平行于 x轴、 y轴已知图形中平行于 x 轴的线段,在直观图中长度不变,平行于 y 轴的线段,长度变为原来的一半(2)画几何体的高:在已知图形中过 O 点作 z 轴垂直于 xOy 平面,在直观图中对应的 z轴,也垂直于 x O y平面,已知图形中平行于 z 轴的线段,在直观图中仍平 行于 z轴且长度不变2.空间几何体的三视图三视图:几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线3.三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别
3、. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.4.还原几何体的基本要素是“长对齐,高平直,宽相等”. 简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线三、备考策略:1.以考查三视图、几何体的结构特征以及几何体的面积体积计算为主,三视图基本稳定为选择题或填空题,难度中等以下;几何体的结构特征往往在解答题中考查,与平行关系、垂直关系等相结合.2.与立体几何相关的“数学文化”等相结合,考查数学应用的.23.备考重点:(
4、1) 掌握三视图与直观图的相互转换方法是关键;(2)掌握常见几何体的结构特征.四、常考题型:三视图是高考重点考查的内容,考查内容有三视图的识别;三视图与直观图的联系与转化;求与三视图对应的几何体的表面积与体积命题形式为用客观题考查识读图形和面积体积计算,解答题往往以常见几何体为载体考查空间想象能力和推理运算能力,期间需要灵活应用几何体的结构特征【真题分析】1.【2018 年浙江卷】某几何体的三视图如图所示(单位:cm) ,则该几何体的体积(单位:cm 3)是A. 2 B. 4 C. 6 D. 8【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.根据三视图可得几何体为一个直四棱柱
5、,高为 2,底面为直角梯形,上下底分别为 1,2,梯形的高为 2,因此几何体的体积为 选 C.【答案】C2.【2018 年理新课标 I 卷】某圆柱的高为 2,底面周长为 16,其三视图如右图圆柱表面上的点 M在正视图上的对应点为 A,圆柱表面上的点 N在左视图上的对应点为 B,则在此圆柱侧面上,从 到 N的路径中,最短路径的长度为( )A.217 B. 25 C. 3 D. 23【解析】分析:首先根据题中所给的三视图,得到点 M 和点 N 在圆柱上所处的位置,点 M 在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点 M、N 在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段
6、最短,利用勾股定理,求得结果.根据圆柱的三视图以及其本身的特征,可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为 ,故选 B.【答案】B3.【2018 年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A. 1 B. 2 C. 3 D. 4【解析】将三视图还原几何体,将简单几何体放在正方体或长方体中进行还原,利用勾股定理求出此立体图形的各棱长,再利用勾股定理的逆定理判断直角三角形的个数.由题中给出的三视图可得四棱锥为PABCD,在四棱锥 PABCD中,可以得到 ,由勾股定理求
7、出:,四棱锥中直角三角形有 PAD, C, PAB共三个,故选 C.【答案】C4.【2018 年全国卷文】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯4眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. A B. B C. C D. D【解析】分析:观察图形可得。观擦图形图可知,俯视图为,故答案为 A.【答案】A5.【2017 北京,文 6】某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.60 B.30 C.20 D.10【解析】本题主要考查的将三视图还原成几何体后求体积的问题。该
8、几何体是三棱锥,如图:5图中红色线围成的几何体为所求几何体,该几何体的体积是 ,故选 D.【答案】D6.【2017 课标 1,理 7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A10 B12 C14 D16【解析】由题意可得这个几何体的直观图是由一个三棱锥与三棱柱组成的,如图所示,这个向何体的平面内只有两个相同的梯形的面,所含梯形的面积的和为 .【答案】B7.【2017 课标 II,理 4】如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,
9、该几何体由一平面将一圆柱截去一部分所得,则该几何体的体 积为( )A 90 B 63 C 42 D 366【解析】由题意可得这个几何本是一个组合体,下半部分是一个底面半径为 3,高为 4 的圆柱,体积为,上半部分是一个底面半径为 3,高为 6 的圆柱的一半,体积为,所以这个几何体的体积为 .【答案】B8.【2017 浙江,3】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A 12B 32 C 123 D 32【解析】本题的考点是根据三视图还原立体图形后求体积的问题,由三视图可知,原立体图形是一个组合体,是圆锥的一半与一个三棱锥的组合,圆锥的底面半径是 1,三
10、棱锥的底面是以 2 为底边的等腰直角三角形,两锥体的高是 3.体积为 .【答案】A9.【2017 北京,理 7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )7A3 2 B.2 3 C.2 2 D.2【解析】由题意可知,结合三视图可还原的几何体是一个四棱锥,图中可看出最长的棱为正方体的体对角线,所以长度为 .【答案】B【模拟考场】1.在一个几何体的三视图中,主视图和俯视图如图所示,则相应的左视图可以为( )【解析】由几何体的主视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂直于底面的三棱锥的组合体,故其左视图应为 D.【答案】D2.若某几何体
11、的三视图如图所示,则这个几何体的直观图可以是( )8【解析】A,B 的正视图不符合要求,C 的俯视图显然不符合要求,答案选 D.【答案】D3.有一个几何体的三视图及其尺寸如下(单位 cm) ,则该几何体的表面积及体积为( )A. 24cm, 31 B. 215cm, 3C. , 6 D. 以上都不正确 【解析】此几何体是个圆锥, , .【答案】A 4.下列几何体各自的三视图中,有且仅有 两个视图相同的是( )9A. B. C. D. 【解析】试题分析:中正视图和侧视图相同,中正视图和侧视图相同,可得正确,故选 D.【答案】D5.【新课标全国卷】一个四面体的顶点在空间直角坐标系 Oxyz 中的坐
12、标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以 zOx 平面为投影面,则得到的正视图可以为( )【解析】在空间直角坐标系 Oxyz 中画出三棱锥,由已知可知三棱锥 OABC 为题中所描叙的四面体,而其在 zOx 平面上的投影为正方形 EBDO,故选 A.【答案】A6.如图,矩形 ABC是水平放置的一个平面图形的直观图,其中 =6Acm, 2Cc,则原图形是 形.【解析】将直观图还原原平面图形为图 2,可求原图中的长度6OA, 42D, =6OC,可得原图形是菱形.10【答案】菱形7.水平放置的 ABC的斜二测直观图如图所示,已知 则 A
13、B边上的中线的实际长度为_. 【解析】由于在直观图中, 则在原图形中,AC=3,BC=4, 斜边 AB5,故斜边 上的中长为 2.5.【答案】2.5.8.小迪身高 1.6m,一天晚上回家走到两路灯之间,如图 1 所示,他发现自己的影子的顶部正好在 A 路灯的底部,他又向前走了 5m,又发现身影的顶部正好在 B 路灯的底部,已知两灯之间的距离为 10m(两路灯高度是一样的).求:(1)路灯的高度(2)当小迪走到 B 路灯下他在 A 灯下的身影有多长?【解析】如图 2 所示,设 A,B 为两路灯,小迪从 MN 移动到 PQ,并设 C、D 分别为 A、B 的底部。11由题中已知得 MN=PQ=1.6m,NQ5m,CD=10m,(1)设 CN=x,则 OD5-x,路灯高 BD 为 hCMN BD, 即 又 PQ A,即 由得 .即路灯高为 6.4m(2)当小迪移到 BD 所在线上(设为 DH) ,连 AH 交地面于 E,则 DE 长即为所求的影长。DEH CA 解得 . 12
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1