1、RAPPORT TECHNIQUE TECHNICAL REPORT CE1 IEC 1000-1 -1 Premire dition First edition 1992-04 Compatibilit lectromagntique (CEM) Partie 1 : Gnralits Section 1 : Application et interprtation de dfinitions et termes fondamentaux Electromagnetic compatibility (EMC) Part 1 : Ge ne ral Section 1 : Applicatio
2、n and interpretation of fundamental definitions and terms Numro de rfrence Reference number CEIAEC 1000-1 -1 1992 Copyright International Electrotechnical Commission Provided by IHS under license with IECNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Validit de la
3、 prsente publication Le contenu technique des publications de la CE1 est cons- tamment revu par la CE1 afin quil reflte ltat actuel de la technique. Des renseignements relatifs la date de reconfirmation de la publication sont disponibles auprs du Bureau Central de la CEI. Les renseignements relatifs
4、 ces rvisions, ltablis- sement des ditions rvises et aux amendements peuvent tre obtenus auprs des Comits nationaux de la CE1 et dans les documents ci-dessous: Bulletin de la CE1 Annuaire de la CE1 Publi annuellement Catalogue des publications de la CE1 Publi annuellement et mis jour rgulirement Ter
5、minologie En ce qui concerne la terminologie gnrale, le lecteur se reportera la CE1 50 Vocabulaire Electrotechnique Inrer- national (VEI), qui se prsente sous forme de chapitres spars traitant chacun dun sujet dfini. Des dtails complets sur le VE1 peuvent tre obtenus sur demande. Voir galement le di
6、ctionnaire multilingue de la CEI. Les termes et dfinitions figurant dans la prsente publi- cation ont t soit tirs du VEI, soit spcifiquement approuvs aux fins de cette publication. Symboles graphiques et littraux Pour les symboles graphiques, les symboles littraux et les signes dusage gnral approuvs
7、 par la CEI, le lecteur consultera: - la CE1 27: Symboles littraux utiliser en lectro- technique; - la CE1 417: Symboles graphiques utilisables sur le matriel. Index, relev et compilation des feuilles individuelles; - la CE1 617: Symboles graphiques pour schmas; et pour les appareils lectromdicaux,
8、- lectriques en pratique mdicale. la CE1 878: Symboles graphiques pour quipements Les symboles et signes contenus dans la prsente publi- cation ont t soit tirs de la CE1 27, de la CE1 417, de la CE1 617 et/ou de la CE1 878, soit spcifiquement approuvs aux fins de cette publication. Publications de l
9、a CE1 tablies par le mme comit dtudes Lattention du lecteur est attire sur les listes figurant la fin de cette publication, qui numrent les publications de la CE1 prpares par le comit dtudes qui a tabli la prsente publication. Validity of this publication The technical content of IEC publications is
10、 kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to the date of the reconfirmation of the publication is available from the IEC Central Office. Information on the revision work, the issue of revised editions and amendments may b
11、e obtained from IEC National Committees and from the following IEC sources: EEC Bulletin IEC Yearbook Catalogue of IEC publications Published yearly Published yearly with regular updates Terminology For general terminology, readers are referred to IEC 50: International Electrotechnical Vocabulary (I
12、EV). which is issued in the form of separate chapters each dealing with a specific field. Full details of the IEV will be supplied on request. See also the IEC Multilingual Dictionary. The terms and definitions contained in the present publi- cation have either been taken from the IEV or have been s
13、pecifically approved for the purpose of this publication. Graphical and letter symbols For graphical symbols, and letter symbols and signs approved by the IEC for general use, readers are referred to publications: - IEC 27: Letter symbols to be used in electrical technology; - IEC 417: Graphical sym
14、bols for use on equip- ment. Inden, survey and compilation of the single sheets: - IEC 617: Graphical symbols for diagrams; and for medical electrical equipment, - equipment in medical practice. IEC 878: Graphical symbols for electromedical The symbols and signs contained in the present publi- catio
15、n have either been taken from IEC 27, IEC 417, IEC 617 and/or IEC 878, or have been specifically appro- ved for the purpose of this publication. IEC publications prepared by the same technical committee The attention of readers is drawn to the end pages of this publication which list the IEC publica
16、tions issued by the technical committee which has prepared the present publication. Copyright International Electrotechnical Commission Provided by IHS under license with IECNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-RAPPORT TECHNIQUE TECHNICAL REPORT CE1 IEC
17、1000-1 -1 Premire dition First edition 1992-04 Compatibilit lectromagntique (CEM) Partie 1 : Gnral ts Section 1 : Application et interprtation de dfinitions et termes fondamentaux Electromagnetic compatibility (EMC) Part 1 : Gen eral Section 1 : Application and interpretation of fundamental definiti
18、ons and terms CE1 1992 Droits de reproduction rservs - Copyright - all rights reserved Aucune partie de 2) l?impdance interne Zi de la source de perturbation employe dans l?essai d?immunit ne sera en gnral pas gale l?impdance interne du rseau proprement dit. (L?examen de la valeur de Zi employer dan
19、s l?essai d?immunit sort du cadre du prsent rapport.) II est possible de spcifier une limite continue pour le niveau d?immunit, comme cela est illustr dans la figure 3. Cela prsente l?avantage que la limite s?applique galement aux harmoniques pairs, aux interharmoniques intermdiaires, et a toutes le
20、s autres pertur- bations de la plage de frquences donne. On peut choisir une fonction continue car, au dbut de cet exemple, on a suppos que le rseau ne sert qu?a l?alimentation en nergie, autrement dit qu?il n?existe pas sur le rseau d?appareil utilisant des frquences diffrentes de la frquence fonda
21、mentale du rseau. Pour les besoins des essais, il peut tre ncessaire de convertir les pourcentages reprsentant la limite d?immunit la figure 3 en valeurs absolues. Exemple 2: Dans cet exemple, on verra que dans certains cas, les niveaux et les limites d?mission, de compatibilit et d?immunit peuvent
22、tre exprims dans des units diffrentes, On considre l?immunit aux champs radiolectriques d?un appareil dont les dimensions sont faibles par rapport la longueur d?onde de ce champ radiolectrique. Chacun sait que l?immunit de l?appareil dpend dans une large mesure de l?immunit aux courants en mode comm
23、un induits dans les fils connectes a cet appareil 4. C?est pourquoi les phnomnes rayonns et conduits, qui sont relis, doivent tre considrs lorsqu?il s?agit d?examiner les moyens de raliser la compatibilit lectromagntique. En ce qui concerne le 3.2.1, comme des tudes complmentaires ont tabli une rela
24、tion entre l?intensit du champ lectrique et la f.e.m., il est possible d?exprimer le niveau d?mission indiqu la figure 1 comme l?intensit du champ lectrique (en dB (pV/m), par exemple) et le niveau d?immunit comme la force lectromotrice (en dB (pV) par exemple) d?une source de perturbation, par exem
25、ple un gnrateur utilis dans le test d?immunit. Copyright International Electrotechnical Commission Provided by IHS under license with IECNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-1000-1 -1 O IEC - 23 - The actual disturbance level strongly depends on the numb
26、er of disturbance sources, .e. on the number of operating appliances connected to the network. In a public low-voltage network the number of sources that may contribute significantly is generally much larger at the low-frequency end than at the high-frequency end. Hence, the uncertainty about the ac
27、tual disturbance level at lower frequencies is much greater than that at higher frequencies. This is reflected in figure 3, where at the low-frequency end the distance between the emission limit (for a single device) and the compatibility level (which takes the superposition of disturbances into acc
28、ount) is much larger than the distance at the high-frequency end. This distance, .e. the emission margin, will be discussed in 3.3. To meet the second requirement a sufficiently strict immunity limit is needed, of which an example is given in figure 3. A distance between this limit and c, .e. an imm
29、unity margin (see 3.3), is needed because: 1) there is still a small probability that at a certain location and during a certain time interval the disturbance level will be above the compatibility level; 2) the internal impedance Zi of the disturbance source used in the immunity test will not, in ge
30、neral, be equal to the internal impedance of the actual network. (A discussion about the value of Zi to be used in the immunity test is beyond the scope of this report.) It is possible to specify a continuous immunity limit as illustrated in figure 3. This has the advantage that the even harmonics,
31、the inter-harmonics and all other disturbances in the given frequency range can be considered. A continuous function could be chosen as it was assumed at the beginning that the network served only as an energy supply, .e. no mains signalling is present. For test purposes there may be a need to conve
32、rt the percent- ages in which the immunity limit is given in figure 3 to absolute values. Example 2: There are cases where emission, compatibility and immunity levels and limits may be expressed in different units. Consider the immunity to RF fields of equipment having dimensions small compared to t
33、he wavelength of that RF field. It is well known that the equipment immunity is determined largely by the immunity to common-mode currents induced in the leads connected to that equipment 4. Hence, the interrelated radiated and conducted phenomena have to be taken into consideration when attempting
34、to achieve EMC. With regard to 3.2.1, as the relationship between the field strength and the e.m.f. has been established in other studies, it is possible to express the emission level in figure 1 as an electric field strength (for example in dB (pV/m) and the immunity level as the e.m.f. (for exampl
35、e in dB (pV) of a disturbing source, e.g. a test generator. Copyright International Electrotechnical Commission Provided by IHS under license with IECNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-1000-1 -1 O CE1 -24- En ce qui concerne la figure 2 et les aspects
36、prsents, le niveau de compatibilit peut dsormais sexprimer en dB (pV/m) ou en dB (pV). On comprendra que ce niveau dpend de lunit choisie. De plus, le choix du niveau de compatibilit peut galement tre dtermi- n par les proprits de susceptibilit du dispositif susceptible considr. Si les problmes de b
37、rouillage lectromagntique rsoudre portent sur ia dmodulation du champ radio- lectrique, la dgradation est (selon une approximation du premier ordre) proportionnelle au carr du niveau de perturbation radiolectrique. De la, on peut choisir une marge dimmunit plus grande que la marge dmission (voir 3.3
38、). 3.3 Si les essais dmission et dimmunit ont t conus de teile sorte quil existe une bonne correlation avec les phnomnes lectromagntiques existant, la situation illustre a la figure 4 peut reprsenter une situation compatible sur le plan lectromagntique pour lmetteur unique et lappareil susceptible u
39、nique considrs. Aspects de probabilits et marges L a 11 Limite dimmunit 0. Marge dmission t Limite dmission Marge de compatibilit Variable indpendante CU 267192 Figure 4 - Limites, niveau de compatibilit et marges, en fonction dune variable indpendante quelconque (par exemple la frquence) Certes, la
40、 figure 4 indique que le niveau dimmunit est suprieur la limite dimmunit, qui est elle-mme suprieure la limite dmission, laquelle, a son tour, est suprieure au niveau dmission. Toutefois, la situation dcrite la figure 4 ne garantit pas quil existe une CEM dans la situation relle, car il subsiste des
41、 incertitudes, dj brivement abordes dans le premier exemple de 3.2.2. En raison de ces incertitudes, une fois que lon a choisi le niveau de compatibilit, des marges doivent tre fixes entre ce niveau et les limites dmission et dimmunit a dterminer. Sur la figure 4, les marges dfinies en 2.3 sont repr
42、sentes sous forme de traits pleins. Les lignes en pointills correspondent la marge de conception de lappareil, dfinir par le fabricant et dj abordes en 3.2.1. Quatre incertitudes importantes seront examines dans les paragraphes qui suivent. Copyright International Electrotechnical Commission Provide
43、d by IHS under license with IECNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-1000-1 -1 O IEC - 25 - 7 Emission limit 1111-111-111111 With regard to figure 2 and the foregoing considerations, the compatibility level may now be expressed in dB (pV/m) or in dB (pV).
44、 It is clear that this level depends on the chosen unit. In addition, the choice of the compatibility level may also be determined by the susceptibility properties of the susceptor concerned. If the EM1 problem to be prevented concerns RF-field demodulation, the degradation is (in first order approx
45、imation) propor- tional to the square of the RF disturbance level. Hence, the immunity margin may be chosen to be larger than the emission margin (see 3.3). 3.3 Probability aspects and margins If the emission and immunity tests have been designed in such a way that there is a good correlation with t
46、he electromagnetic phenomena existing, the situation in figure 4 may represent an electromagnetically compatible situation for the single emitter and susceptor under consideration. j immunity limit .- v) Immunity margin 3 u Q Compatibility level t Emission margin t Figure 4 - Limits, compatibility l
47、evel and margins, as a function of any independent variable (for example the frequency) Indeed, figure 4 indicates that the immunity level is higher than the immunity limit and this is higher than the emission limit which, in turn, is higher than the emission level. However, the situation depicted i
48、n figure 4 does not guarantee that EMC will exist in the actual situation, as there are uncertainties, already briefly mentioned in the first example in 3.2.2. The existence of these uncertainties means that after the compatibility level has been chosen, margins are required between that level and the emission and immunity limits to be prescribed. In figure 4, the margins, defined in 2.3, are shown as solid lines. The dashed lines refer to the equipment design m
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1