ImageVerifierCode 换一换
格式:PDF , 页数:10 ,大小:2MB ,
资源ID:1254111      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1254111.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ISO 497-1973 Guide to the choice of series of preferred numbers and of series containing more rounded values of preferred numbers《优先数系和化整值的优先数系的选用指南》.pdf)为本站会员(orderah291)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ISO 497-1973 Guide to the choice of series of preferred numbers and of series containing more rounded values of preferred numbers《优先数系和化整值的优先数系的选用指南》.pdf

1、NORME INTERNATIONALE INTERNATIONAL ORGANlTlON FOR STAf.JDARDlTlON .ME)j(flYHAPOAHAfi OPTAHM3ALJWR l-IO CTAHAPTW3AWWi.ORGANISATlON INTERNATIONALE DE NORMALISATION Guide pour le choix des skies de nombres normaux et des shries comportant des valeurs plus arrondies de nombres normaux Premiere bdition -

2、 1973-05-01 CDU 389.171 Descripteurs : nombres normaux, shlection. R b) elle precise les conditions dans lesquelles ces valeurs plus arrondies des nombres normaux peuvent etre employees et les consequences de cet emploi; c) elle donne des regles susceptibles deviter toute incertitude dans le choix e

3、ntre les nombres normaux et les diverses valeurs plus arrondies. 2 RkFkRENCES IS0 3, Nombres normaux - Skies de nombres normaux. IS0 3 7, Guide pour lemploi des nombres normaux et des skies de nombres normaux. 3 AVANTAGES DE LAPPLICATION STRICTE DES NOMBRES NORMAUX Les avantages de Iemploi des nombr

4、es normaux, exposes dans les Normes lnternationales IS0 3 et IS0 17 sont rappel c) ou la s mais on peut remarquer que les arrondis conventionnels ont ete choisis de faGon a ce que la regularite de la serie, cest-a-dire le rap- port entre deux termes, reste tres proche de la raison theo- rique (defau

5、t de regularite maximal de 1 ,I5 % en R 40). .5 ECARTS RkELS DES VALEURS PLUS ARRONDIES A.5.1 Les seules valeurs plus arrondies dont Iemploi peut etre admis exceptionnellement, ont 6th etudiees pour avoir seulement deux ou meme un seul chiffre significatif et pour que degre de precision et degre de

6、regularite des series R et R”, . pour la constitution desquelles elles sont prevues, restent admissiblesl ) . A.5.2 I I nen reste pas mo ins que leu r difference avec le nombre theorique est notabl ement plus grande que pour les 1) La valeur I,2 pdvue en R 40 B la place de 1,18, secarte du nombre th

7、eorique de + 0,97 % et est done presque aussi acceptable q qui secarte de - 0,71 %; mais, si on considere Iechelonnement, la valeur arrondie 1,2 sinsere mal entre 1 ,l et 1,25; en effet, Iecart raison theorique 1 ,059 3, obtenu par difference algebrique des differences dans les colonnes 7 et 8, comm

8、e indique en A.1 -2, est modifie nombres normaux eux-m4mes (voir colonnes 7 a 10 du tableau - difference maximale encadree); la regularit de la raison des series R et R” est egalement moins bonne que celle des series de nombres normaux et le defaut maximal de cette regularite (indique en bas des col

9、onnes 1 a 4 du tableau) atteint, par exemple, 5,37 % en R” 5 au lieu de 1,42% en R 5 ou 2,94% en R40 au lieu de 1,15% en R 40. A.5.3 II y a lieu de noter que, pour certains termes, Iarrondi admissible en R” 5 ou R” 10, ne Iest plus en serie plus serree. Ainsi, la valeur I,5 differant de 5,36 % de sa

10、 valeur theorique, entraOne un &art de 5,60 % sur le rapport avec le terme 2,0 suivant, &zart admissible en R” 10 de raison voisine de I,25 et decart maximal admissible 12,9 % suivant A.2.1. Mais cette valeur ne peut etre retenue en R” 20 de raison voisine de 1,12, car il en resulterait un &art de 6,58 % par rapport au terme suivant 1,8, alors que I&art maximal admissible est 6,1 %. + 0,97 + I,96 entre I,2 et I,1 de = + 2,93 % 100 - 0,7l - 0,97 entre I,25 et I,2 de =-1,68% 100 ue 1,18 avec la Les deux rapports sucessifs sont done 1,088 6 et 1,042 5, au lieu de 1,059 3.

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1