ImageVerifierCode 换一换
格式:PDF , 页数:50 ,大小:2MB ,
资源ID:1257644      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1257644.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ISO TR 13587-2012 Three statistical approaches for the assessment and interpretation of measurement uncertainty《测量不确定性的解释和评定用三种统计方法》.pdf)为本站会员(visitstep340)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ISO TR 13587-2012 Three statistical approaches for the assessment and interpretation of measurement uncertainty《测量不确定性的解释和评定用三种统计方法》.pdf

1、 Reference number ISO/TR 13587:2012(E) ISO 2012TECHNICAL REPORT ISO/TR 13587 First edition 2012-07-15 Three statistical approaches for the assessment and interpretation of measurement uncertainty Trois approches statistiques pour lvaluation et linterprtation de lincertitude de mesure ISO/TR 13587:20

2、12(E) COPYRIGHT PROTECTED DOCUMENT ISO 2012 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the add

3、ress below or ISOs member body in the country of the requester. ISO copyright office Case postale 56 CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyrightiso.org Web www.iso.org Published in Switzerland ii ISO 2012 All rights reservedISO/TR 13587:2012(E) ISO 2012 All rights

4、 reserved iiiContents Page Foreword . v Introduction vi 1 Scope 1 2 Normative references 1 3 Terms and definitions . 1 4 Symbols (and abbreviated terms) 2 5 The problem addressed 3 6 Statistical approaches 4 6.1 Frequentist approach 4 6.2 Bayesian approach 5 6.3 Fiducial approach 5 6.4 Discussion .

5、6 7 Examples 6 7.1 General . 6 7.2 Example 1a . 6 7.3 Example 1b . 7 7.4 Example 1c . 7 8 Frequentist approach to uncertainty evaluation 7 8.1 Basic method . 7 8.2 Bootstrap uncertainty intervals . 10 8.3 Example 1 . 13 8.3.1 General . 13 8.3.2 Example 1a . 14 8.3.3 Example 1b . 15 8.3.4 Example 1c

6、 15 9 Bayesian approach for uncertainty evaluation 16 9.1 Basic method . 16 9.2 Example 1 . 18 9.2.1 General . 18 9.2.2 Example 1a . 18 9.2.3 Example 1b . 20 9.2.4 Example 1c . 21 9.2.5 Summary of example 21 10 Fiducial inference for uncertainty evaluation . 21 10.1 Basic method . 21 10.2 Example 1

7、 . 23 10.2.1 Example 1a . 23 10.2.2 Example 1b . 25 10.2.3 Example 1c . 26 11 Example 2: calibration of a gauge block . 26 11.1 General . 26 11.2 Frequentist approach 28 11.3 Bayesian approach 30 11.4 Fiducial approach 33 12 Discussion . 35 12.1 Comparison of uncertainty evaluations using the three

8、statistical approaches 35 ISO/TR 13587:2012(E) iv ISO 2012 All rights reserved12.2 Relation between the methods proposed in GUM Supplement 1 (GUMS1) and the three statistical approaches .38 13 Summary .40 Bibliography 42 ISO/TR 13587:2012(E) ISO 2012 All rights reserved vForeword ISO (the Internatio

9、nal Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been

10、established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standar

11、dization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for v

12、oting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. In exceptional circumstances, when a technical committee has collected data of a different kind from that which is normally published as an International Standard (“state of the ar

13、t”, for example), it may decide by a simple majority vote of its participating members to publish a Technical Report. A Technical Report is entirely informative in nature and does not have to be reviewed until the data it provides are considered to be no longer valid or useful. Attention is drawn to

14、 the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO/TR 13587:2012 was prepared by Technical Committee ISO/TC 69, Applications of statistical methods, Subcommittee SC 6, M

15、easurement methods and results. This Technical Report is primarily based on Reference 10. ISO/TR 13587:2012(E) vi ISO 2012 All rights reservedIntroduction The adoption of ISO/IEC Guide 98-3 (GUM) 1has led to an increasing recognition of the need to include uncertainty statements in measurement resul

16、ts. Laboratory accreditation based on International Standards like ISO 170252 has accelerated this process. Recognizing that uncertainty statements are required for effective decision-making, metrologists in laboratories of all types, from National Metrology Institutes to commercial calibration labo

17、ratories, are exerting considerable effort on the development of appropriate uncertainty evaluations for different types of measurement using methods given in the GUM. Some of the strengths of the procedures outlined and popularized in the GUM are its standardized approach to uncertainty evaluation,

18、 its accommodation of sources of uncertainty that are evaluated either statistically (Type A) or non-statistically (Type B), and its emphasis on reporting all sources of uncertainty considered. The main approach to uncertainty propagation in the GUM, based on linear approximation of the measurement

19、function, is generally simple to carry out and in many practical situations gives results that are similar to those obtained more formally. In short, since its adoption, the GUM has sparked a revolution in uncertainty evaluation. Of course, there will always be more work needed to improve the evalua

20、tion of uncertainty in particular applications and to extend it to cover additional areas. Among such other work, the Joint Committee for Guides in Metrology (JCGM), responsible for the GUM since the year 2000, has completed Supplement 1 to the GUM, namely, “Propagation of distributions using a Mont

21、e Carlo method” (referred to as GUMS1)3 . The JCGM is developing other supplements to the GUM on topics such as modelling and models with any number of output quantities. Because it should apply to the widest possible set of measurement problems, the definition of measurement uncertainty in ISO/IEC

22、Guide 99:20074 as a “non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used” cannot reasonably be given at more than a relatively conceptual level. As a result, defining and understanding the appropriate roles of dif

23、ferent statistical quantities in uncertainty evaluation, even for relatively well-understood measurement applications, is a topic of particular interest to both statisticians and metrologists. Earlier investigations have approached these topics from a metrological point of view, some authors focusin

24、g on characterizing statistical properties of the procedures given in the GUM. Reference 5 shows that these procedures are not strictly consistent with either a Bayesian or frequentist interpretation. Reference 6 proposes some minor modifications to the GUM procedures that bring the results into clo

25、ser agreement with a Bayesian interpretation in some situations. Reference 7 discusses the relationship between procedures for uncertainty evaluation proposed in GUMS1 and the results of a Bayesian analysis for a particular class of models. Reference 8 also discusses different possible probabilistic

26、 interpretations of coverage intervals and recommends approximating the posterior distributions for this class of Bayesian analyses by probability distributions from the Pearson family of distributions. Reference 9 compares frequentist (“conventional”) and Bayesian approaches to uncertainty evaluati

27、on. However, the study is limited to measurement systems for which all sources of uncertainty can be evaluated using Type A methods. In contrast, measurement systems with sources of uncertainty evaluated using both Type A and Type B methods are treated in this Technical Report and are illustrated us

28、ing several examples, including one of the examples from Annex H of the GUM. Statisticians have historically placed strong emphasis on using methods for uncertainty evaluation that have probabilistic justification or interpretation. Through their work, often outside metrology, several different appr

29、oaches for statistical inference relevant to uncertainty evaluation have been developed. This Technical Report presents some of those approaches to uncertainty evaluation from a statistical point of view and relates them to the methods that are currently being used in metrology or are being develope

30、d within the metrology community. The particular statistical approaches under which different methods for uncertainty evaluation will be described are the frequentist, Bayesian, and fiducial approaches, which are discussed further after outlining the notational conventions needed to distinguish diff

31、erent types of quantities. TECHNICAL REPORT ISO/TR 13587:2012(E) ISO 2012 All rights reserved 1Three statistical approaches for the assessment and interpretation of measurement uncertainty 1 Scope This Technical Report is concerned with three basic statistical approaches for the evaluation and inter

32、pretation of measurement uncertainty: the frequentist approach including bootstrap uncertainty intervals, the Bayesian approach, and fiducial inference. The common feature of these approaches is a clearly delineated probabilistic interpretation or justification for the resulting uncertainty interval

33、s. For each approach, the basic method is described and the fundamental underlying assumptions and the probabilistic interpretation of the resulting uncertainty are discussed. Each of the approaches is illustrated using two examples, including an example from ISO/IEC Guide 98-3 (Uncertainty of measu

34、rement Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). In addition, this document also includes a discussion of the relationship between the methods proposed in the GUM Supplement 1 and these three statistical approaches. 2 Normative references The following referenced docu

35、ments are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 3534-1:2006, Statistics Vocabulary and symbols Part 1: General statistical

36、 terms and terms used in probability ISO 3534-2:2006, Statistics Vocabulary and symbols Part 2: Applied statistics ISO/IEC Guide 98-3:2008, Uncertainty of measurement Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) ISO/IEC Guide 98-3:2008/Suppl 1:2008, Uncertainty of measure

37、ment Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) Supplement 1: Propagation of distributions using a Monte Carlo method 3 Terms and definitions For the purposes of this document, the terms and definitions in ISO 3534-1, ISO 3534-2 and the following apply. 3.1 empirical di

38、stribution function empirical cumulative distribution function distribution function that assigns probability 1 n to each of the items in a random sample, i.e., the empirical distribution function is a step function defined by n () i n x x Fx n , where 1 ,., n x x is the sample and A is the number o

39、f elements in the set A . ISO/TR 13587:2012(E) 2 ISO 2012 All rights reserved3.2 Bayesian sensitivity analysis study of the effect of the choices of prior distributions for the parameters of the statistical model on the posterior distribution of the measurand 3.3 sufficient statistic function of a r

40、andom sample 1 ,., n X X from a probability density function with parameter for which the conditional distribution of 1 ,., n X X given this function does not depend on NOTE A sufficient statistic contains as much information about as 1 ,., n X X . 3.4 observation model mathematical relation between

41、 a set of measurements (indications), the measurand, and the associated random measurement errors 3.5 structural equation statistical model relating the observable random variable to the unknown parameters and an unobservable random variable whose distribution is known and free of unknown parameters

42、 3.6 non-central chi-squared distribution probability distribution that generalizes the typical (or central) chi-squared distribution NOTE 1 For independent, normally distributed random variables k i X with mean i and variance 2 i , the random variable 2 1 k XX () ii i is non-central chi-squared dis

43、tributed. The non-central chi-squared distribution has two parameters: , the degrees of freedom (i.e., the number of k i X ), and , which is related to the means of the random variables i X by 2 1 ( k ii i ) and called the non-centrality parameter. NOTE 2 The corresponding probability density functi

44、on is expressed as a mixture of central 2 probability density functions as given by 2 2 0 () 1 22 2 0 2 (2 ) () () ! 2! 2 2 ki i XY i k i i k i i e gg i e k ii , where is distributed as chi-squared with degrees of freedom. q Y q 4 Symbols (and abbreviated terms) In 4.1.1 of the GUM, it is stated tha

45、t Latin letters are used to represent both physical quantities to be determined by measurement (i.e., measurands in GUM terminology) as well as random variables that may take different observed values of a physical quantity. This use of the same symbols, whose different meanings are only indicated b

46、y context, can be difficult to interpret and sometimes leads to unnecessary ambiguities or misunderstandings. To mitigate this potential source of confusion, the more traditional notation often used in the statistical literature is employed in this Technical Report. In this notation, Greek letters a

47、re used to represent parameters in a statistical model (e.g., measurands), which can be either random variables or ISO/TR 13587:2012(E) ISO 2012 All rights reserved 3constants depending on the statistical approach being used and nature of the model. Upper-case Latin letters are used to represent ran

48、dom variables that can take different values of an observable quantity (e.g., potential measured values), and lower-case Latin letters to represent specific observed values of a quantity (e.g., specific measured values). Since additional notation may be required to denote other physical, mathematica

49、l, or statistical concepts, there will still always be some possibility for ambiguity 1) . In those cases the context clarifies the appropriate interpretation. 5 The problem addressed 5.1 The concern in this Technical Report is with a measurement model in which 1 ,., p are input quantities and is the output quantity: 1 ., , p f (1) where f is known as the measurement function. The function f is specified math

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1