ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:488.04KB ,
资源ID:137142      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-137142.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017年福建省高考模拟数学文.docx)为本站会员(bowdiet140)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2017年福建省高考模拟数学文.docx

1、2017年福建省高考模拟 数学文 一、选择题:本大题共 12 小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目要求的 . 1.已知复数 z=m+2i,且 (2+i)z是纯虚数,则实数 m=( ) A.1 B.2 C.-1 D.-2 解析:把复数 z=m+2i 代入 (2+i)z,然后利用复数代数形式的乘法运算化简,再由已知条件列出方程组,求解可得答案 . (2+i)z=(2+i)(m+2i)=2m+4i+mi+2i2=(2m-2)+(m+4)i为纯虚数, 2 2 040mm, 解得 m=1. 答案: A. 2.若公差为 2的等差数列 an的前 9项和为 81,则 a9=( )

2、A.1 B.9 C.17 D.19 解析:利用等差数列前 n项和公式求出首项,由此能求出第 9项 . 公差为 2的等差数列 an的前 9项和为 81, S9=9a1+982 2=81, 解得 a1=1, a9=1+(9-1) 2=17. 答案: C. 3.函数 y=x2+ln|x|的图象大致为 ( ) A. B. C. D. 解析:先求出函数为偶函数,再根据函数值的变化趋势或函数的单调性即可判断 . f(-x)=x2+ln|x|=f(x), y=f(x)为偶函数, y=f(x)的图象关于 y 轴对称,故排除 B, C, 当 x 0时, y -,故排除 D, 或者根据,当 x 0时, y=x2+

3、lnx为增函数,故排除 D, 答案: A. 4.已知集合 A=a, 1, B=a2, 0,那么“ a=-1”是“ A B ”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:根据集合交集的定义结合充分条件和必要条件的定义进行判断 . 当 a=-1时, A=-1, 1, B=1, 0,则 A B=1 成立,即充分性成立, 若 A B ,则 a2=1或 a2=a,即 a=1或 a=-1或 a=0, 当 a=1时, A=1, 1不成立, 当 a=-1时, A=-1, 1, B=1, 0,则 A B=1 成立, 当 a=0时, B=0, 0不成立

4、,综上 a=-1, 即“ a=-1”是“ A B ”的充要条件 . 答案: C. 5.当生物死亡后,其体内原有的碳 14 的含量大约每经过 5730年衰减为原来的一半,这个时间称为“半衰期” .当死亡生物体内的碳 14 含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了 .若某死亡生物体内的碳 14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是 ( ) A.8 B.9 C.10 D.11 解析 :设死亡生物体内原有的碳 14含量为 1,则经过 n个“半衰期”后的含量为 (12)n, 由 (12)n 11000得: n 10 所以,若探测不到碳 14含量,至少需要经过 10 个

5、“半衰期” . 答案 : C. 6.已知三棱锥 P-ABC的三条侧棱两两互相垂直,且 AB= 5 , BC= 7 , AC=2,则此三棱锥的外接球的体积为 ( ) A.83 B.8 23 C.163 D.323 解析: AB= 5 , BC= 7 , AC=2, PA=1, PC= 3 , PB=2 以 PA、 PB、 PC为过同一顶点的三条棱,作长方体如图: 则长方体的外接球同时也是三棱锥 P-ABC外接球 . 长方体的对角线长为 1 23 4 2 , 球直径为 2 2 ,半径 R= 2 , 因此,三棱锥 P-ABC外接球的体积是 3344 2 83 3 3 2R . 答案: B. 7.执行

6、如图所示的程序框图,若输入 n=2017,输出 S的值为 0,则 f(x)的解析式可以是 ( ) A.f(x)=sin(3x) B.f(x)=sin(2x) C.f(x)=cos(3x) D.f(x)=cos(2x) 解析:模拟程序的运行,可得程序框图的功能是计算并输出 S=f(1)+f(2)+ +f(2017)的值, 由于 S=f(1)+f(2)+ +f(2017)=0, 观察四个选项,相位为3x的三角函数的最小正周期为 23=6: 对于选项 A: S=f(1)+f(2)+ +f(2017)=336(f(1)+f(2)+ +f(6)+f(2017)=f(2017)=f(1)=sin3 0,

7、故排除 . 选项 C: S=f(1)+f(2)+ +f(2017)=336(f(1)+f(2)+ +f(6)+f(2017)=f(2017)=f(1)=cos3 0, 故排除 . 由于,相位为2x的三角函数的最小正周期为 22=4: 选项 B: S=f(1)+f(2)+ +f(2017)=504(f(1)+f(2)+ +f(4)+f(2017)=f(2017)=f(1)=sin2 0, 故排除 . 选项 D: S=f(1)+f(2)+ +f(2017)=504(f(1)+f(2)+ +f(4)+f(2017)=f(2017)=f(1)=cos2=0, 故正确 . 答案: D. 8.已知函效 f

8、(x)= 3010x sinx xxx, ,则下列结论正确的是 ( ) A.f(x)有极值 B.f(x)有零点 C.f(x)是奇函数 D.f(x)是增函数 解析:当 x 0时, f(x)=x-sinx, f (x)=1-cosx 0恒成立, f(x)在 (-, 0)上为增函数, f(x) f(0)=0, 当 x 0时, f(x)=x3+1,函数为增函数, f(x) f(0)=1, 综上所述 f(x)是增函数,函数无极值,无零点, f(-x) -f(x), f(-x) f(x), 函数为非奇非偶函数, 答案 : D 9.如图, O 与 x 轴的正半轴交点为 A,点 B, C 在 O 上,且 B(

9、45, 35),点 C 在第一象限, AOC=, BC=1,则 cos(56- )=( ) A. 45B. 35C.35D.45解析:如图, B(45, 35),得 OB=OC=1,又 BC=1, BOC=3, AOB=3-,由直角三角形中的三角函数的定义可得 sin(3- )=sin AOB=35 , cos AOB=45 , sin =sin(3- AOB)=sin3cos AOB-cos3sin AOB 3 1 3224 3 4 35 5 1 0 , cos =cos(3- AOB)=cos3cos AOB+sin3sin AOB 1 3 3224 3 4 35 5 1 0 . cos(

10、56- )=cos56cos +sin56sin 3 3 14 3 4 3 31 0 1 5322 0 . 答案: B. 10.已知直线 l过点 A(-1, 0)且与 B: x2+y2-2x=0相切于点 D,以坐标轴为对称轴的双曲线E过点 D,一条渐进线平行于 l,则 E的方程为 ( ) A. 223 144yxB. 223 122xyC. 2 25 13y xD. 223 122yx解析:可设直线 l: y=k(x+1), B: x2+y2-2x=0的圆心为 (1, 0),半径为 1, 由相切的条件可得,20 11kkdk, 解得 k= 33, 直线 l的方程为 y= 33(x+1), 联立

11、 x2+y2-2x=0,解得 x=12, y= 32, 即 D(12, 32), 由题意可得渐近线方程为 y= 33x, 设双曲线的方程为 y2-13x2=m(m 0), 代入 D的坐标,可得 11 24323m . 则双曲线的方程为 223 122yx. 答案 : D. 11.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体最长的棱长为 ( ) A.4 3 B.4 2 C.6 D.2 5 解析:根据几何体的三视图还原几何体形状,求出各棱的长度,比较后,可得答案 . 利用“三线交汇得顶点”的方法,该几何体位三棱锥 P-ABC,如图所示: 其中,正方体棱长为 4,点

12、P是正方体其中一条棱的中点, 则: AB=AC=4, 22 54 2 2PC , 2224 4 4 2 62B C A P B P , 所以最长棱为 6. 答案: C 12.已知函数 f(x)=x(a-e-x),曲线 y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与 y轴垂直,则实数 a 的取值范围是 ( ) A.(-e2, + ) B.(-e2, 0) C.(-e-2, + ) D.(-e-2, 0) 解析:曲线 y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与 y轴垂直, f (x)=a+(x-1)e-x=0 有两个不同的解,即得 a=(1-x)e-x有两个不同的解,

13、设 y=(1-x)e-x,则 y =(x-2)e-x, x 2, y 0, x 2, y 0 x=2时,函数取得极小值 -e-2, 0 a -e-2. 答案: D. 二、填空题:本大题共 4小题,每小题 5分 13.设向量 ar =(1, 3 ), br =(m, 3 ),且 ar , br 的夹角为3,则 m= . 解析:根据平面向量的数量积,列出方程,即可求出 m的值 . 向量 ar =(1, 3 ), br =(m, 3 ),且 ar , br 的夹角为3, 则 |ar |=2, |br |= 2 3m , ar br =m+3, 根据公式 ar br =|ar |br |cos ar

14、, br 得: m+3=2 2 3m 12, 解得 m=-1. 答案: -1. 14.若 x, y满足约束条件 20202 2 0xyxyxy ,则 z=x+2y 的最小值为 . 解析:因为线性约束条件所决定的可行域为非封闭区域且目标函数为线性的, 最值一定在边界点处取得 . 分别将点 (43, 23), (2, 0)代入目标函数, 求得:1 482 2333z , z2=2+2 0=0,所以最小值为 2. 答案: 2. 15.椭圆 C: 221xyab(a b 0)的左、右焦点分别为 F1, F2,上、下顶点分别为 B1, B2,右顶点为 A,直线 AB1与 B2F1交于点 D.若 2|AB

15、1|=3|B1D|,则 C的离心率等于 . 解析 :如图所示 : 设 D(x0, y0),由 2|AB1|=3|B1D|,得: 1 35ABAD, 根据三角形相似得:0035aba x y ,求得: 0 23xa , 0 53yb , 又直线 B2F1的方程为 1xycb, 将点 D( 23a, 53b)代入,得: 5323 1abcb, 2 5 813 3 3e , 2 3 13 8 4e . 答案 : 14. 16.已知函数 f(x)=sin( x+4)( 0)在 (12,3)上有最大值,但没有最小值,则的取值范围是 . 解析:要求函数 f(x)=sin( x+4)( 0)在 (12,3)

16、上有最大值,但没有最小值, 31 2 4 2 3 4 2 gg , 解之即可得: (34, 3). 答案: (34, 3). 三、解答题:解答应写出文字说明、证明过程或演算步骤 17. ABC中,角 A, B, C的对边分别为 a, b, c, 2bcosC-c=2a. ( )求 B的大小 . 解析: ( )由余弦定理化简已知等式可得: a2+c2-b2=-ac,进而可求 cosB= 12,结合范围 B (0, ),可求 B的值 . 答案: ( ) 2bcosC-c=2a, 由余弦定理可得: 2 2 2222a b cb c aab g, 化简可得: a2+c2-b2=-ac, 2 2 2 1

17、2c o s 2a c bB ac , B (0, ), B=23. ( )若 a=3,且 AC边上的中线长为 192,求 c的值 . 解析: ( )由 ( )可得: b2=a2+c2+ac=c2+3c+9,取 AC 中点 D,连接 BD,由余弦定理可求22 1944c o sbaC ab ,整理可得 22229 2 9 44bbbc ,联立即可解得 c的值 . 答案: ( )由 ( )可得: b2=a2+c2+ac=c2+3c+9, 又 2 2 2c o s2a b cC ab, 取 AC中点 D,连接 BD, 在 CBD中,222 2 2 1944c o s2baB C C D B DCB

18、 C C D a bg, 22229 2 944bbbc , 把代入,化简可得: c2-3c-10=0, 解得: c=5或 c=-2(舍去 ),可得: c=5. 18.如图,三棱柱 ABC-A1B1C1中,侧面 ACC1A1侧面 ABB1A1, B1A1A= C1A1A=60, AA1=AC=4,AB=1. ( )求证: A1B1 B1C1. 解析: ( )取 AA1中点 O,连结 OC1, AC1,推导出 OC1 AA1, OC1 A1B1, A1B1 OB1,从而 A1B1平面 OB1C1,由此能证明 A1B1 B1C1. 答案: ( )证明:取 AA1中点 O,连结 OC1, AC1,

19、OB1, AA1=AC=A1C1=4, C1A1A=60, AC1A1为正三角形, OC1 AA1, OC1=2 3 , 又侧面 ACC1A1侧面 ABB1A1,面 ACC1A1面 ABB1A1=AA1, OC1 面 ACC1A1, OC1平面 ABB1A1, 又 A1B1 平面 ABB1A1, OC1 A1B1, 在 OA1B1中, OA1B1=60, A1B1=AB=1, OA1=2, OB12=1+4-2 1 2 cos60 =3,解得 OB1= 3 , OA12=OB12+A1B12, A1B1 OB1, 又 OB1 OC1=O, OB1 平面 OB1C1, OC1 平面 OB1C1,

20、 A1B1平面 OB1C1, B1C1 平面 OB1C1, A1B1 B1C1. ( )求三棱锥 ABC-A1B1C1的侧面积 . 解析: ( )在平行四边形 ABB1A1中,过 B1作 B1E 1 于点 E,过 O作 OF BB1于点 F,则 OFB1E为矩形推导出 BB1 OC1, C1F BB1,由此能求出三棱锥 ABC-A1B1C1的侧面积 . 答案: ( )依题意,11 1 1 112 s i n 6 02 8 3A B B AS A B A A , 在平行四边形 ABB1A1中,过 B1作 B1E AA1于点 E,过 O作 OF BB1于点 F, 则 OFB1E为矩形, OF=B1

21、E, 由 ( )知 OC1平面 ABB1A1, BB1 平面 ABB1A1, BB1 OC1, BB1 OF, OC1 OF=O, OC1 平面 OC1F, OF 平面 OC1F, BB1平面 OC1F, C1F 平面 OC1F, C1F BB1, B1E=A1B1 sin60 = 32, 在 Rt OC1F中, OC1=2 3 , OF=B1E= 32, 2213325122CF, 11 11 2 5 1B C C BS B B C F , 三棱锥 ABC-A1B1C1的侧面积 2 8 2 5 1 1 0 2 53 133S . 19.某公司生产一种产品,第一年投入资金 1 000 万元,出

22、售产品收入 40 万元,预计以后每年的投入资金是上一年的一半,出售产品所得收入比上一年多 80 万元,同时,当预计投入的资金低于 20 万元时,就按 20 万元投入,且当年出售产品收入与上一年相等 . ( )求第 n年的预计投入资金与出售产品的收入 . 解析: ( )设第 n年的投入资金和收入金额分别为 an万元, bn万元,根据题意可得 an是首项为 1000,公比为 12的等比数列, bn是首项为 40,公差为 80 的等差数列,问题得以解决 . 答案: ( )设第 n年的投入资金和收入金额分别为 an万元, bn万元, 依题意得,当投入的资金不低于 20万元,即 an 20, an=12

23、an+1bn=bn+1+80, n 2, 此时 an是首项为 1000,公比为 12的等比数列, bn是首项为 40,公差为 80的等差数列, 所以 an=1000 (12)n-1, bn=80n-40, 令 an 20,得 2n-1 50,解得 n 7 所以111 0 0 0 1 62027nnnan , 8 0 4 0 1 64 4 0 7nnnbn ,. ( )预计从哪一年起该公司开始盈利? (注:盈利是指总收入大于总投入 ) 解析: ( )根据等差数列的求和公式和等比数列的求和公式得到 Sn,再根据数列的函数特征,即可求出答案 . 答案: ( ) 2121 0 0 0 14 0 8 0

24、 4 02 0 0 0 4 0 2 0 0 02 111 22nnnnnSn , 所以 Sn-Sn-1=-2000 (12)n+80n-40, n 2, 因为 f(x)=-2000 (12)x+80x-40为增函数, f(3) 0, f(4) 0, 所以当 2 n 3时, Sn+1 Sn,当 4 n 6时, Sn+1 Sn, 又因为 S1 0, S6=-528.75 0, 所以 1 n 6, Sn 0,即前 6年未盈利, 当 n 7, Sn=S6+(b7-a7)+(b8-a8)+ +(bn-an)=-528.75+420(n-6), 令 Sn 0,得 n 8 综上,预计公司从第 8 年起开始盈

25、利 . 20.已知点 F(1, 0),直线 l: x=-1,直线 l垂直 l于点 P,线段 PF的垂直平分线交 l于点 Q. ( )求点 Q的轨迹 C的方程 . 解析: ( )由抛物线的定义可知: Q 到直线 x=-1 的距离与到点 F 的距离相等,点 Q 的轨迹是以 F为焦点, l为准线方程的抛物线,即可求得点 Q的轨迹 C的方程 . 答案: ( )由题意可知丨 QP丨 =丨 QF 丨,即 Q到直线 x=-1的距离与到点 F的距离相等, 点 Q的轨迹是以 F为焦点, l为准线方程的抛物线, 设抛物线的方程 y2=2px(p 0),则 p=2, 点 Q的轨迹 C的方程 y2=4x. ( )已知

26、点 H(1, 2),过 F且与 x轴不垂直的直线交 C于 A, B两点,直线 AH, BH 分别交 l于点 M, N,求证:以 MN为直径的圆必过定点 . 解析: ( )求得焦点坐标,设直线方程,代入抛物线方程,求得直线直线 AH, BH 的斜率分别为 k1, k2,求得 M 和 N 的坐标,由韦达定理求得 yM yN=4, yM+yN= 4m,代入圆的方程,即可求得 x和 y的值,则以 MN为直径的圆必过定点 . 答案: ( )证明:由题意可知:设直线 AB: x=my+1(m 0), 2 41yxx my ,整理得: y2-4my-4=0, 设 A( 214y, y1), B( 224y,

27、 y2),则 y1+y2=4m, y1 y2=-4, 又 H(1, 2),设直线 AH, BH 的斜率分别为 k1, k2, 则2111142421yyk y,22 22 242421yky y, 直线 AH: 14212yxy , BH: 24212yxy , 设 M(-1, yM), N(-1, yN), 令 x=-1,得: 111228222Myyyy , 同理,得: 222228222Nyyyy , 1 2 1 2121 2 1 2 1 24 2 42 2 2 2 4 4 2 4 4 42 2 2 4 4 2 4 4MNy y y yy y myyy y y y y y m gg ,

28、121 2 1 2 1 2 1 2848 8 1 12 2 4 8 42 2 2 2 2 4MNyyyyy y y y y y y y , 8 4 4 44 4 2 4 4m mm , 由 MN为直径的圆的方程为 (x+1)2+(y-yM)(y-yN)=0, 整理得: x2+2x-3+y2+4my=0, 令2202 3 0yx x y ,解得: x=-3, x=1, 以 MN 为直径的圆必过定点 (-3, 0), (1, 0). 21.已知函数 f(x)=(ax-1)ex, a R. ( )讨论 f(x)的单调区间 . 解析: ( )求出 f(x)的定义域,以及导数,讨论 a=0, a 0,

29、a 0,判断导数符号,解不等式即可得到所求单调区间 . 答案: ( )f(x)的定义域为 R,且 f (x)=(ax+a-1)ex. 当 a=0时, f (x)=-ex 0,此时 f(x)的单调递减区间为 (-, + ); 当 a 0时,由 f (x) 0,得 x 1aa,由 f (x) 0,得 x 1aa. 此时 f(x)的单调减区间为 (-, 1aa),单调增区间为 ( 1aa, + ); 当 a 0时,由 f (x) 0,得 x 1aa,由 f (x) 0,得 x 1aa. 此时 f(x)的单调减区间为 ( 1aa, + ),单调增区间为 (-, 1aa). ( )当 m n 0时,证明

30、: men+n nem+m. 解析: ( )运用分析法证明 .要证 men+n nem+m,即证 men-m nem-n,也就是证 11nmee ,令 g(x)= 1xex, x 0,求出导数,再令 h(x)=xex-ex+1,求出导数,判断单调性,即可得证 . 答案: ( )证明:要证 men+n nem+m,即证 men-m nem-n, 也就是证 m(en-1) n(em-1). 也就是证 11nmee , 令 g(x)= 1xex, x 0, g (x)=21xxxe ex, 再令 h(x)=xex-ex+1, h (x)=ex+xex-ex=xex 0, 可得 h(x)在 x 0递增

31、,即有 h(x) h(0)=0, 则 g (x) 0, g(x)在 (0, + )递增, 由 m n 0,可得 11nmee , 故原不等式成立 . 请考生在第 (22)、 (23)两题中任选一题作答 .注意:只能做所选定的题目 .如果多做,则按所做第一个题目计分,作答时请用 2B铅笔在答题卡上将所选题号后的方框涂黑 . 选修 4-4:坐标系与参数方程 22.在极坐标系中,曲线 C1: =2cos,曲线 C2: sin2 =4cos .以极点为坐标原点,极轴为 x轴正半轴建立直角坐标系 xOy,曲线 C的参数方程为12322xtyt (t为参数 ). ( )求 C1, C2的直角坐标方程 .

32、解析: ( )曲线 C1: =2cos,即 2=2 cos,利用互化公式可得直角坐标方程 . 曲线 C2: sin2 =4cos即 2sin2 =4 cos,利用互化公式可得直角标准方程 . 答案: ( )曲线 C1: =2cos,即 2=2 cos,化为直角坐标方程: x2+y2=2x. 曲线 C2: sin2 =4cos即 2sin2 =4 cos,化为直角标准方程: y2=4x. ( )C 与 C1, C2交于不同四点,这四点在 C 上的排列顺次为 P, Q, R, S,求 |PQ|-|RS|的值 . 解析: ( )设四点在 C 上的排列顺次为 P, Q, R, S,其参数分别为 t1,

33、 t2, t3, t4.曲线 C的参数方程代入抛物线方程可得: 3t2-8t-32=0. 1 0,可得 t1+t4.曲线 C 的参数方程代入圆 的 方 程 可 得 : t2+t=0. 2 0 , 可 得 t2+t3. |PQ|-|RS|=|(t2-t1)-(t4-t3)|=|(t2+t3)-(t1+t4)|即可得出 . 答案: ( )设四点在 C 上的排列顺次为 P, Q, R, S,其参数分别为 t1, t2, t3, t4. 曲线 C的参数方程为12322xtyt (t为参数 )代入抛物线方程可得: 3t2-8t-32=0. 1 0,可得 t1+t4=83. 曲线 C 的参数方程为1232

34、2xtyt (t 为参数 )代入圆的方程可得: t2+t=0. 2 0,可得t2+t3=-1. |PQ|-|RS|=|(t2-t1)-(t4-t3)|=|(t2+t3)-(t1+t4)|=|1+83|=113. 选修 4-5不等式选讲 23.已知函数 f(x)=|x-a|+|2x-1|. ( )当 a=1时,解不等式 f(x) 2. 解析: ( )分类讨论,即可解不等式 . 答案: ( )当 a=1时,不等式 f(x) 2,即 |x-1|+|2x-1| 2. x 12时,不等式可化为 1-x+1-2x 2,解得 x 0, x 0; 12 x 1时,不等式可化为 1-x+2x-1 2,解得 x 2, x无解; x 1时,不等式可化为 x-1+2x-1 2,解得 x 43, x 43; 综上所述,不等式的解集为 (-, 0 43, + ). ( )求证: f(x) |a-12|. 解析: ( )利用绝对值不等式,即可证明 . 答案: ( )证明: f(x)=|x-a|+|2x-1| |a-x|+|x-12| |a-12|.

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1