ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:179.50KB ,
资源ID:1393908      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1393908.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【考研类试卷】考研数学一-线性代数线性方程组及答案解析.doc)为本站会员(eastlab115)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

【考研类试卷】考研数学一-线性代数线性方程组及答案解析.doc

1、考研数学一-线性代数线性方程组及答案解析(总分:117.00,做题时间:90 分钟)一、选择题(总题数:19,分数:19.00)1.设 A 为 mn 矩阵,r(分数:1.00)A.=m,b0,则线性方程组 Ax=b(A) 可能无解B.一定无解C.可能有解D.一定有解2.齐次线性方程组 Ax=0 有非零解的充分必要条件是(分数:1.00)A.A 的任意两个列向量线性相关B.A 的任意两个列向量线性无关C.A 中必有一列向量是其余列向量的线性组合D.A 中任一列向量都是其余列向量的线性组合3.设 A 为,m5 矩阵,矩阵曰满足 AB=0,且 r(分数:1.00)A.+rB.=5,其中C. 2, 4

2、D.1, 3, 44.设 A 为 mn 矩阵,r(分数:1.00)A.=m,且方程组 Ax=0 只有零解,则下列结论正确的是(A) 方程组B.mnC.A 的列向量组线性相关D.以上都不对5.设 A 是 n 阶矩阵,A *是 A 的伴随矩阵,齐次线性方程组 Ax=0 有 2 个线性无关的解,则(分数:1.00)A.A*x=0 的解均是 Ax=0 的解B.Ax=0 的解均是 A*x=0 的解C.A*x=0 与 Ax=0 无非零公共解D.A*x=0 与 Ax=0 仪有两个非零公共解6.设向量组 1, 2, 3是齐次线性方程组 Amnx=0 的基础解系,则 a 1+ 2,b 2+ 3,c 3+ 1也是

3、Amnx=0 的基础解系的充分必要条件是(分数:1.00)A.a=b=c=0B.a=b=c=1C.abc-1D.abc=-17.设齐次线性方程组 Ax=0,其中 Amn的秩 r(分数:1.00)A.=n-3, 1, 2, 3为方程组的 3 个线性无关的解向量,则方程组 Ax=0 的基础解系为(A) 1, 2+ 3B. 1- 2, 2- 3, 3- 1C. 1, 1+ 2, 1+ 2+ 3D. 1- 2+ 3, 1+ 2- 3,-2 18.设矩阵 (分数:1.00)A.B.C.D.9.设非齐次线性方程组 Ax=b,其中 A 是 mn 矩阵,则 Ax=b 有唯一解的充分必要条件是(分数:1.00)

4、A.r()=nB.r()=nC.r()=mD.r()=n 且 b 为 A 的列向量组的线性组合10.设 A 是 45 矩阵,且 A 的行向量线性无关,则下列结论错误的是(分数:1.00)A.ATx=0 只有零解B.ATAx=0 必有无穷多解C.有唯一解D.总有无穷多解11.设 A 是 mn 矩阵,B 是 nm 矩阵,且 r(分数:1.00)A.=n,rB.=m,则对于任意 m 维向量 b,ABC.总有无穷多解D.是否有解与 m,n 的大小关系有关12.设四元齐次线性方程组 (分数:1.00)A.B.C.D.13.设 1=( 1, 2, 3)T, 2=(b1,b 2,b 3)T, 3=(c1,c

5、 2,c 3)T,则 3 条直线aix+biy+ci=0( (分数:1.00)A.B.C.D.14.设 1, 2, 3, 1+a 2-2 3均是非齐次线性方程组 Ax=b 的解,则对应齐次线性方程组 Ax=0 有解(分数:1.00)A. 1=2 1+n 2+ 3B. 2=2 1+3 2-2a 3C. 3=a 1+2 2- 3D. 4=3 1-2a 2+ 315.设 A 为 n 阶方阵,若 是非齐次线性方程组 Ax=b 的解, 1, 2, r是导出组 Ax=0 的基础解系,则下列结论正确的是(分数:1.00)A.r()rB.r()rC.r(, 1, 2, r)=rD.r(, 1, 2, r)=r

6、+116.设 A 为,mn 矩阵,b0,且 mn,则线性方程组 Ax=b(分数:1.00)A.有唯一解B.有无穷多解C.无解D.可能无解17.设 A 是 mn 矩阵,r(分数:1.00)A.=n-2, 1, 2, 3是非齐次线性方程组 Ax=b 的 3 个线性无关的解向量,k 1,k 2为任意常数,则此方程组的通解是(A) k 1( 1- 2)+k2( 2+ 3)+ 1B.k1( 1- 3)+k2( 1+ 2)+ 1C.k1( 2- 3)+k2( 1+ 3)+ 2D.k1( 1- 2)+k2( 2- 3)+ 218.设 A 是 ms 矩阵,曰是 sn 矩阵,则方程组 ABx=0 与方程组 Bx

7、=0 是同解方程组的充分条件是(分数:1.00)A.r()=nB.r()=sC.r()=sD.r()=n19.已知非齐次线性方程组(分数:1.00)A.B.C.D.二、填空题(总题数:14,分数:18.00)20.设 B 是 3 阶非零矩阵,已知 B 的每一列向量都是方程组(分数:2.00)填空项 1:_21.设线性方程组 (分数:1.00)填空项 1:_22.设 n 元齐次线性方程组 Ax=0 的一个基础解系中线性无关的解向量个数是 n,则 A= 1(分数:1.00)填空项 1:_23.设 (分数:1.00)填空项 1:_24.设矩阵 (分数:1.00)填空项 1:_25.设一个齐次线性方程

8、组的基础解系数为 (分数:1.00)填空项 1:_26.设 A 为 23 矩阵,r(A) =2,已知非齐次线性方程组 Ax=b 有解 1, 2,且 = (分数:1.00)填空项 1:_27.若任意一个 n 维向量都是齐次线性方程组(分数:1.00)填空项 1:_28.设 1, 2, 3是非齐次线性方程绀 Ax=b 的解,= 1+a 2-3 3,则 是 Ax=b 的解的充分必要条件为 a=_, 是齐次线性方程组 Ax=0 的解的充分必要条件为 a=_(分数:2.00)填空项 1:_29.线性方程组 (分数:1.00)填空项 1:_30.已知非齐次线性方程组 Ax=b 的增广矩阵经初等行变换化为(

9、分数:3.00)填空项 1:_31.设线性方程组则方程组满足条件 (分数:1.00)填空项 1:_32.设一个非齐次线性方程组的全部解为(分数:1.00)填空项 1:_33.已知 n 阶方阵 A=(aij)nn又 1, 2, n是 A 的列向量组,|A|=0,伴随矩阵 A*0,则齐次线性方程组 A*x=0 的通解为_(分数:1.00)三、解答题(总题数:16,分数:80.00)34.设齐次线性方程组的系数矩阵 A=(aij)nn的秩为 n-1,试证:此方程组的一般解(全部解)为(分数:5.00)_35.设 (分数:5.00)_(分数:5.00)(1).已知 A33x=b 有通解 k1 1+k2

10、 2+,证明 1, 2, 线性无关;(分数:2.50)_(2).设 A33x=b 有通解 (分数:2.50)_36.设 1=(1,-2,1,0,0) T, 2=(1,-2,0,1,0) T, 3=(0,0,1,-1,0) T, 4=(1,-2,3,-2,0) T是线性方程组(分数:5.00)_37.已知齐次方程组(分数:5.00)_38.设 1=(1,-2,1,0,0) T, 2=(2,-4,1,1,0) T, 3=(-4,4,1,0,-1) T是齐次线性方程组的一个基础解系,求此齐次线性方程组(分数:5.00)_39.求以 1=(1,-1,1,0) T, 2=(1,1,0,1) T, 3=(

11、2,0,1,1) T为解向量的齐次线性方程组(分数:5.00)_40.设 A 和 B 均是 mn 矩阵,r(A) +r(B) =n,若 BBT=E 且 B 的行向量是齐次方程组 Ax=0 的解,P 是 m 阶可逆矩阵,证明:矩阵 PB 的行向量是 Ax=0 的基础解系(分数:5.00)_41. 取何值时,线性方程组(分数:5.00)_42.设线性方程组(分数:5.00)_43.设线性方程组(分数:5.00)_44.设线性方程组(分数:5.00)_45.已知 4 元非齐次线性方程组 Ax=b 的系数矩阵 A 的秩为 3,又 1, 2, 3是它的 3 个解向量,其中 1+ 2=(1,1,0,2)

12、T, 2+ 3=(1,0,1,3) T,试求 Ax=b 的通解(分数:5.00)_46.设 (分数:5.00)_47.已知 4 阶矩阵 A=( 1, 2, 3, 4), 1, 2, 3, 4是 4 维列向量,若方程组 Ax= 的通解是(1,2,2,1) T+k(1,-2,4,0) T,又 B=( 3, 2, 1,- 4),求方程组 Bx=3 1+5 2- 3的通解有非零公共解,求 a 的值及其所有公共解(分数:5.00)_48.已知齐次线性方程组()的基础解系为 1=(1,2,5,7) T, 2=(3,-1,1,7) T, 3=(-2,3,4,20) T,齐次线性方程组()的基础解系为 1=(

13、1,4,7,1) T, 2=(1,-3,-4,2) T,求方程组()与()的公共解(分数:5.00)_考研数学一-线性代数线性方程组答案解析(总分:117.00,做题时间:90 分钟)一、选择题(总题数:19,分数:19.00)1.设 A 为 mn 矩阵,r(分数:1.00)A.=m,b0,则线性方程组 Ax=b(A) 可能无解B.一定无解C.可能有解D.一定有解 解析:分析 方程组 Ax=b 有解的充分必要条件为 r(A)=r(A,b),本题可据此判别因为 r(A)=m,矩阵(A,b)是 m(n+1)矩阵,由m=r(A)r(A,b)m,可知 r(A,b)=m,因此方程组 Ax=b 必有解故应

14、选(D)2.齐次线性方程组 Ax=0 有非零解的充分必要条件是(分数:1.00)A.A 的任意两个列向量线性相关B.A 的任意两个列向量线性无关C.A 中必有一列向量是其余列向量的线性组合 D.A 中任一列向量都是其余列向量的线性组合解析:分析 设齐次线性方程组的系数矩阵 A 为 mn 矩阵,则方程组 Ax=0 有非零解的充分必要条件是r(A)n,即 A 的列向量线性相关选项(A)是 A 的列向量线性相关的充分条件,不是必要条件;选项(B)本身就是错误结论;选项(D)也是错误结论因为线性相关的向量中不是任一向城都可以由其余向量线性表出的故应选(C)3.设 A 为,m5 矩阵,矩阵曰满足 AB=

15、0,且 r(分数:1.00)A.+rB.=5,其中C. 2, 4D.1, 3, 4解析:分析 由 AB=0 可知,B 的每一列向量 i(1i4)都是齐次线性方程组 Ax=0 的解,又 r(B)=5-r(A),所以 Ax=0 的基础解系中含有解向量的个数为 r(B),对 B 施以初等行变换由此得 r(B)=2故选项中可作为 Ax=0 基础解系的是(B),应选(B)4.设 A 为 mn 矩阵,r(分数:1.00)A.=m,且方程组 Ax=0 只有零解,则下列结论正确的是(A) 方程组 B.mnC.A 的列向量组线性相关D.以上都不对解析:分析 有关齐次线性方程组 Amnx=0 解的情况,应熟记当

16、r(A)=n 时方程组有唯一零解,当 r(A)n 时方程组有非零解由方程组 Ax=0 只有零解及 r(A)=m 可知 m=n,所以系数矩阵 A 是满秩方阵,于是 x=A-1 是方程组 Ax=的唯一解故应选(A)5.设 A 是 n 阶矩阵,A *是 A 的伴随矩阵,齐次线性方程组 Ax=0 有 2 个线性无关的解,则(分数:1.00)A.A*x=0 的解均是 Ax=0 的解B.Ax=0 的解均是 A*x=0 的解 C.A*x=0 与 Ax=0 无非零公共解D.A*x=0 与 Ax=0 仪有两个非零公共解解析:分析 由于齐次线性方程组 Ax=0 有两个线性无关的解,所以 Ax=0 的基础解系所含的

17、线性无关解向量的个数为 n-r(A)2,则 A*=0,任意非零列向量均是 A*x=0 的解故选(B)但 A*x=0 的解不一定是Ax=0 的解,由此可知(A)不对由于 Ax=0 有无穷多个非零解,与 A*x=0 的公共解也有无穷多个非零解,所以(C),(D)也不对6.设向量组 1, 2, 3是齐次线性方程组 Amnx=0 的基础解系,则 a 1+ 2,b 2+ 3,c 3+ 1也是Amnx=0 的基础解系的充分必要条件是(分数:1.00)A.a=b=c=0B.a=b=c=1C.abc-1 D.abc=-1解析:分析 已知 1, 2, 3是 Amnx=b 的基础解系,表明 1, 2, 3是方程组

18、 Amnx=6 的线性无关解向量,且 n-r(A)=3由齐次方程组解的性质知,a 1+ 2,b 2+ 3,c 3+ 1也是 Amnx=b 的解向量且向量个数也是 3(=n-r(A)个,故a 1+ 2,b 2+ 3,c 3+ 1是 Ax=0 的基础解系*a 1+ 2,b 2+ 3,c 3+ 1线性无关因*记*,则 a 1+ 2,b 2+ 3,c 3+ 1线性无关*即 abc-1,故应选(C)另外,(A),(B)是充分条件,但不是必要条件(D)既不是充分条件也不是必要条件7.设齐次线性方程组 Ax=0,其中 Amn的秩 r(分数:1.00)A.=n-3, 1, 2, 3为方程组的 3 个线性无关的

19、解向量,则方程组 Ax=0 的基础解系为(A) 1, 2+ 3B. 1- 2, 2- 3, 3- 1C. 1, 1+ 2, 1+ 2+ 3 D. 1- 2+ 3, 1+ 2- 3,-2 1解析:分析 因矩阵 Amn的秩 r(A)=n-3,所以方程组 Ax=0 的基础解系应含有 3 个线性无关的解向量,所以可先排除(A)又选项(B),(C),(D)都是方程组 Ax=0 的解,但(B),(D)中的向量组线性相关,故不是方程组的基础解系实际上,对于(B),有( 1- 2)+( 2- 3)+( 3- 1)=0,对于(D),有( 1- 2+ 3)+( 1+ 2- 3)-2 1=O,对于(C),向量组 1

20、, 1+ 2, 1+ 2+ 3线性无关故应选(C)8.设矩阵 (分数:1.00)A.B. C.D.解析:分析 由于齐次线性方程组 Ax=0 的基础解系含有 2 个线性无关的解向量,所以r(A)=4-2=2而*由此可知 t0若 t=0,则 r(A)=3,那么方程组的基础解系只有一个解向量当 t0 时,继续对 A 施行初等行变换,有*所以当 t=1 时,r(A)=2方程组的基础解系含有 2 个解向量,故应选(B)9.设非齐次线性方程组 Ax=b,其中 A 是 mn 矩阵,则 Ax=b 有唯一解的充分必要条件是(分数:1.00)A.r()=nB.r()=nC.r()=mD.r()=n 且 b 为 A

21、 的列向量组的线性组合 解析:分析 这里系数矩阵 A 不是方阵,不能用克拉默法则由题设 Ax=b 有解,即 b 可以由 A 的列向量组线性表出,或 b 为 A 的列向量组的线性组合,再由解唯一,Ax=b 的导出组 Ax=0 只有零解,得知 A 列满秩,所以(D)正确r(A)=n,不能推断 A 的秩是多少若有 r(A)=n,则方程组有解且唯一;若 r(A)=n-1,则方程组无解,所以(A)不正确r(A)=n,不能推断增广矩阵 A 的秩是多少,荇有 r(A)=n,则方程组有解且唯一;若 r(A)=n+1,则方程组无解,所以(B)不正确r(A)=m,不能推断 A 的秩是多少,若有 r(A)=m,则方

22、程组有解若还有 m=n,则解唯一;若 mn,则有无穷多解;若 r(A)=m-1,则方程绀无解,所以(C)不正确综上分析,应选(D)10.设 A 是 45 矩阵,且 A 的行向量线性无关,则下列结论错误的是(分数:1.00)A.ATx=0 只有零解B.ATAx=0 必有无穷多解C.有唯一解 D.总有无穷多解解析:分析 依题设,A 的秩为 4,或说 A 行满秩,也说 AT列满秩显然,A Tx=0 只有零解,所以(A)正确ATA 是 5 阶方阵,又知 r(ATA)=r(A)=4,则|A TA|=0,A TAx=0 有无穷多解,所以(B)正确对于方程组 ATx=b,b 是 5 维列向量,依题设 AT列

23、满秩意味着 AT的 4 个列向量线性无关,就存在 5 维向量b,使得 AT的 4 个列向量和 b 是线性无关的,就是说这佯的线性方程组是无解的所以(C)是错误的故应选(C)至于选项(D),因为 A 的秩为 4,即 A 有 4 个列向量线性无关,所以在方程组 Ax=b 中,向量 b 是 4 维列向量,那么任意向量 b 和 A 的 4 个线性无关列向量一起就构成 5 个四维向量,显然它们线性相关,b 可以由A 的 4 个线性无关列向量线性表出,就是 Ax=b 有解又它的导出组是五元方程组 Ax=0,系数矩阵的秩为4,Ax=0 有非零解,所以 Ax=b 有无穷多解(D)正确11.设 A 是 mn 矩

24、阵,B 是 nm 矩阵,且 r(分数:1.00)A.=n,rB.=m,则对于任意 m 维向量 b,AB C.总有无穷多解D.是否有解与 m,n 的大小关系有关解析:分析 依题设 r(A)=n,有 mn,又依题设 r(B)=m,有 nm,于是 n=m,A 和 B 都是满秩方阵所以对任意 m 维向量 b,非齐次线性方程组 ABx=b 总有唯一解,且其解为x=(AB)-1b故选(B)12.设四元齐次线性方程组 (分数:1.00)A.B.C. D.解析:分析 方程组的系数矩阵为*,由此可得 r(A)=24,故该方程组存在基础解系,且基础解系中直含有 2 个线性无关的解向量由此可排除(A),(B),(D

25、),应选(C)13.设 1=( 1, 2, 3)T, 2=(b1,b 2,b 3)T, 3=(c1,c 2,c 3)T,则 3 条直线aix+biy+ci=0( (分数:1.00)A.B.C.D. 解析:分析 这是平面上 3 条直线的问题,这里的方程组是*依题意 3 条直线交于一点,就是该方程组有唯一解,即系数矩阵的秩等于增广矩阵的秩且等于 2,即*或 r( 1, 2, 3)=r( 1, 2)=2也就是 1, 2, 3线性相关, 1, 2线性无关所以正确选项是(D)选项(A): 1, 2, 3线性相关,并未指出 3可由 1, 2线性表出,方程组可能无解即使方程组有解,若 r( 1, 2, 3)

26、=r( 1, 2)=1,还有可能交于一条直线,所以不选(A)选项(B): 1, 2, 3线性无关,即增广矩阵的秩为 3,而系数矩阵的秩2,所以方程组无解至于选项(C):由于没有确定秩等于 2,所以有可能交于一点,也可能交于一条直线14.设 1, 2, 3, 1+a 2-2 3均是非齐次线性方程组 Ax=b 的解,则对应齐次线性方程组 Ax=0 有解(分数:1.00)A. 1=2 1+n 2+ 3B. 2=2 1+3 2-2a 3C. 3=a 1+2 2- 3D. 4=3 1-2a 2+ 3 解析:分析 由题设条件 A i=b(i=1,2,3),及A( 1+a 2-2 3)=b+ab-2b=b(

27、1+a-2)=b(b0),得 a=2当 a=2 时,将选项逐个左乘 A,看是否满足 A i=0(i=1,2,3,4)因A 1=A(2 1+2 2+ 3)=5b0,A 2=A(-2 1+3 2-4 3)=-3b0,A 3=A(2 1+2 2- 3)=3b0,A 4=A(3 1-4 2+ 3)=0,故 4是对应齐次方程组 Ax=0 的解选(D)15.设 A 为 n 阶方阵,若 是非齐次线性方程组 Ax=b 的解, 1, 2, r是导出组 Ax=0 的基础解系,则下列结论正确的是(分数:1.00)A.r()rB.r()rC.r(, 1, 2, r)=rD.r(, 1, 2, r)=r+1 解析:分析

28、 依题意, 1, 2, r是导出组 Ax=0 的基础斛系,即 1, 2, r线性无关,且 r(A)=n-r又知 是非齐次线性方程组 Ax=b 的解,若(C)成立,则 可以由 1, 2, r线性表出, 和 1, 2, r线性相关于是 A=0,与 A=b 矛盾由 r(A)=n-r,显然无法判断 r(A)r 或 r(A)r所以不选(A)和(B)由排除法可知,应选(D)16.设 A 为,mn 矩阵,b0,且 mn,则线性方程组 Ax=b(分数:1.00)A.有唯一解B.有无穷多解C.无解D.可能无解 解析:分析 非齐次线性方程组解的情况:当 r(A)r(*)时方程组无解;当 r(A)=r(*)=n 时

29、方程组有唯一解;当 r(A)=r(*)n 时方程组有无穷多解因为根据题设有可能 r(A)r(*),故应选(D)17.设 A 是 mn 矩阵,r(分数:1.00)A.=n-2, 1, 2, 3是非齐次线性方程组 Ax=b 的 3 个线性无关的解向量,k 1,k 2为任意常数,则此方程组的通解是(A) k 1( 1- 2)+k2( 2+ 3)+ 1B.k1( 1- 3)+k2( 1+ 2)+ 1C.k1( 2- 3)+k2( 1+ 3)+ 2D.k1( 1- 2)+k2( 2- 3)+ 2 解析:分析 由于 r(A)=n-2,对应的齐次线性方程组 Ax=0 的基础解系仅含有 2 个解向量,那么 1

30、- 2, 2- 3均是 Ax=0 的解设c1( 1- 2)+c2( 2- 3)=0,由于 1, 2, 3线性无关,只有 c1=c2=0,所以, 1- 2, 2- 3线性无关,故它们是 Ax=0 的基础解系,那么 Ax=b 的通解是(D),故应选(D)18.设 A 是 ms 矩阵,曰是 sn 矩阵,则方程组 ABx=0 与方程组 Bx=0 是同解方程组的充分条件是(分数:1.00)A.r()=nB.r()=s C.r()=sD.r()=n解析:分析 由于方程组 Bx=0 的解是方程组 ABx=0 的解,如果 r(A)=s,则方程组 Ay=0 仅有零解所以当 ABx=0 时,只有 Bx=0,即 A

31、Bx=0 的解也是 Bx=0 的解,那么齐次线性方程组 ABx=0 与 Bx=0 同解故应选(B)19.已知非齐次线性方程组(分数:1.00)A.B.C.D. 解析:分析 由已知,方程组()、()合在一起所得方程组必有解,对合并后方程组的增广矩阵施以初等行变换,化为阶梯形矩阵*则得 q=-1又通解形式为 k+,则对应齐次线性方程组系数矩阵的秩必为 3,得 p1故应选(D)二、填空题(总题数:14,分数:18.00)20.设 B 是 3 阶非零矩阵,已知 B 的每一列向量都是方程组(分数:2.00)填空项 1:_ (正确答案:1,1)解析:分析 非零矩阵 B 的列向量是方程组的解,等价于齐次线性

32、方程组有非零解这是 3 个未知数 3个方程的方程组,它有非零解则其系数矩阵 A 的行列式|A|=0,由此可解出参数 t求矩阵 B 至少有多少列线性无关,等价于求矩阵 B 的秩的上限依题意,有 AB=0,根据矩阵的秩的性质,有 r(A)+r(B)n 此时问题就转化为求矩阵 A 的秩记方程组的系数矩阵为*依题意方程组 Ax=0 有非零解,所以*解得 t=1又依题意有 AB=0,于是 r(A)+r(B)3当 t=1 时,*显然,r(A)=2,故有 r(B)1,所以 B 至多有 1 列线性无关21.设线性方程组 (分数:1.00)填空项 1:_ (正确答案:-2)解析:分析 三元非齐次线性方程组有无穷

33、多解,其系数矩阵的秩等于增广矩阵的秩且小于 3方法 1对增广矩阵作初等行变换化成阶梯形*显然,若 a=1,方程组无解,故 a-10将第 2 行,第 3 行各除 1-a,得*当 a=-2 时,上述矩阵化为*此时方程组有无穷多解方法 2 由*解得 a=-2 及 a=1当 a=-2 时,系数矩阵*系数矩阵的秩为 2,增广矩阵*增广矩阵的秩也为 2,故方程组有无穷多解当 a=1 时,系数矩阵为*系数矩阵的秩为 1,增广矩阵为*增广矩阵的秩为 2,方程组无解所以,a=-222.设 n 元齐次线性方程组 Ax=0 的一个基础解系中线性无关的解向量个数是 n,则 A= 1(分数:1.00)填空项 1:_ (

34、正确答案:0)解析:分析 由题设条件,Ax=0 的基础解系中所含线性无关解向量的个数为 n,于是 n=n-r(A),得 r(A)=0,故 A=023.设 (分数:1.00)填空项 1:_ (正确答案:1)解析:分析 由题设条件,Ax=0 的解空间的维数为 2,所以 4-r(A)=2,得 r(A)=2又由 r(A)=2,可知a=124.设矩阵 (分数:1.00)填空项 1:_ (正确答案:(0,1,0) T)解析:分析 对方程组的系数矩阵施以初等行变换,有*由此得与原方程组(E-A)x=0 同解的方程组*取自由未知量 x2=1,得原方程组的一个基础解系(0,1,0) T25.设一个齐次线性方程组

35、的基础解系数为 (分数:1.00)填空项 1:_ (正确答案:*)解析:分析 设所求的齐次线性方程组为x1a1+x2a2+x3a3+x4a4=0,将基础解系 1, 2代入,得到齐次线性方程组*求出基础解系,对其增广矩阵施以初等行变换*得到基础解系*则所求齐次线性方程组为*26.设 A 为 23 矩阵,r(A) =2,已知非齐次线性方程组 Ax=b 有解 1, 2,且 = (分数:1.00)填空项 1:_ (正确答案:*(k 为任意常数))解析:分析 求齐次线性方程组的通解,关键是求出基础解系应含向量的个数,并且求出一个基础解由于系数矩阵为 23 矩阵,故未知量个数 n=3,又因 r(A)=2,

36、故基础解系含向量的个数为 n-r(A)=3-2=1因 1, 2都是方程组 Ax=b 的解,由*仍是方程组 Ax=b 的解于是*是对应齐次线性方程组 Ax=0 的解向量,且 是非零向量,故 线性无关,所以 是齐次线性方程组 Ax=0 的一个基础解系,从而对应的齐次线性方程组的通解为*(k 为任意常数)27.若任意一个 n 维向量都是齐次线性方程组(分数:1.00)填空项 1:_ (正确答案:0)解析:分析 根据已知任一 n 维向量都是齐次线性方程组的解向量,所以方程组有 n 个线性无关的解向量,即方程组的基础解系中含有 n 个线性无关的解向量于是 n=n-r(A),得 r(A)=028.设 1,

37、 2, 3是非齐次线性方程绀 Ax=b 的解,= 1+a 2-3 3,则 是 Ax=b 的解的充分必要条件为 a=_, 是齐次线性方程组 Ax=0 的解的充分必要条件为 a=_(分数:2.00)填空项 1:_ (正确答案:3,2)解析:分析 由于 1, 2, 3是非齐次线性方程组 Ax=b 的解,则 = 1+a 2-3 3是 Ax=b 的解的充分必要条件是 1+a-3=1,故得 a=3又由于 1, 2, 3是非齐次线性方程组 Ax=b 的解,故 1= 2- 1, 2= 3- 2是对应齐次方程组Ax=0 的解,所以k1 1+k2 2=k1( 2- 1)+k2( 3- 2)=-k1 1+(k1-k

38、2) 2+k2 3= 1+a 2-3 3=是齐次方程组 Ax=0 的解的充分必婴条件是 k1=-1,k 2=-3故得 a=k1-k2=-1+3=229.线性方程组 (分数:1.00)填空项 1:_ (正确答案:a 1+a2=a3+a4)解析:分析 写出方程组的增广矩阵,并施以初等行变换*此方程组有解的充分必要条件是 r(A)=r(A)=3,所以方程组有解的充分必要条件是a1+a2=a3+a430.已知非齐次线性方程组 Ax=b 的增广矩阵经初等行变换化为(分数:3.00)填空项 1:_ (正确答案:-1,1,-1)解析:分析 当 A 为 mn 矩阵时,Ax=b 有无穷多解的充分必要条件为 r(

39、A)=r(A,b)n,此时 Ax=0 的基础解系含 n-r(A)个解向量,而 Ax=b 无斛的充分必要条件为 r(A)r(A,b)因为 n=5,且当 -1 时,r(A)=4;r(A,b)=4,当 =-1 时 r(A)=3,r(A,b)=4,所以分别填入:-1,1;=-131.设线性方程组则方程组满足条件 (分数:1.00)填空项 1:_ (正确答案:*,*,其中 k1,k 2是任意常数)解析:分析 写出方程组的增广矩阵,并施以初等行变换*由此得到方程组的全部解*,其中 k1,k 2是任意常数条件*等价于 x1=x2,或 x1=-x2若 x1=x2,由方程组的全部解可知 2+k1-k2=1+3k1,得到 k2=1-2k1,代入全部解得到*,其中 k1是任意常数若 x1=-x2,有 2+k1-k2=-1-3k1,得到 k2=3+4k1,代入全部解得到*,其中 k1是任意常数32.设一个非齐次线性方程组的全部解为(分数:1.00)填空项 1:_ (正确答案:9x 1+5x2-3x3=-5)解析:分析 设所求的非齐次线性方程组为 x1a1+x2a2+x3a3=b,由题设可知*是其导出组的基础解系,将其代入对应的齐次线性方程组,得到*于是此齐次线性方程组的参数解a1=-9k,a 2=-5k,a 3=3k,其中 k 为任意常数由题

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1