ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:244KB ,
资源ID:1394772      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1394772.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【考研类试卷】考研数学三-406 (1)及答案解析.doc)为本站会员(explodesoak291)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

【考研类试卷】考研数学三-406 (1)及答案解析.doc

1、考研数学三-406 (1)及答案解析(总分:100.00,做题时间:90 分钟)一、填空题(总题数:29,分数:82.00)1. (分数:2.00)2. (分数:2.50)3.设 z=e sin2xy ,则 dz= 1 (分数:2.50)4. (分数:2.50)5. (分数:2.50)6.设 f(x,y)满足 (分数:2.50)7. 其中 f,g 二阶连续可导,则 (分数:2.50)8.设 且 f(u,v)具有二阶连续的偏导数,则 (分数:2.50)9.设 其中 f(u)可导,则 (分数:2.50)10.设 z=f(x 2 +y 2 +z 2 ,xyz)且 f 一阶连续可偏导,则 (分数:2.

2、50)11.设 y=y(x,z)是由方程 e x+y+z =x 2 +y 2 +z 2 确定的隐函数,则 (分数:2.50)12.设 z=f(x,y)是由 确定的函数,则 (分数:2.50)13.设 y=y(x)由 确定,则 (分数:2.50)14.设 z=z(x,y)由 z+ez=xy 2 确定,则 dz= 1 (分数:2.50)15.设 z=f(x+y,y+z,z+x),其中 f 连续可偏导,则 (分数:2.50)16.设 其中 f 可导,则 (分数:2.50)17.由方程 (分数:2.50)18.设 f(x,y,z)=e x yz 2 ,其中 z=z(x,y)是由 x+y+z+xyz=0

3、 确定的隐函数,则 f“ x (0,1,-1)= 1 (分数:2.50)19.设 f(x,y)可微,且 f“ 1 (-1,3)=-2,f“ 2 (-1,3)=1,令 (分数:2.50)20. (分数:3.50)21. (分数:3.50)22. (分数:3.50)23.设 f(x,y)连续,且 (分数:3.50)24.设 f(x,y)在点(0,0)的邻域内连续, (分数:3.50)25. (分数:3.50)26.设 D:x 2 +y 2 R 2 ,则 (分数:3.50)27.设 f(x)在0,1上连续,且 则 (分数:3.50)28. (分数:3.50)29. (分数:3.50)二、选择题(总题

4、数:7,分数:18.00)30.设 (分数:3.00)A.对 x 可偏导,对 y 不可偏导B.对 x 不可偏导,对 y 可偏导C.对 x 可偏导,对 y 也可偏导D.对 x 不可偏导,对 y 也不可偏导31.设 f“ x (x 0 ,y 0 ),f“ y (x 0 ,y 0 )都存在,则_ Af(x,y)在(x 0 ,y 0 )处连续 B Cf(x,y)在(x 0 ,y 0 )处可微 D (分数:2.50)A.B.C.D.32.设 f(x,y)在点(0,0)的某邻域内连续,且满足 (分数:2.50)A.取极大值B.取极小值C.不取极值D.无法确定是否有极值33.设 f(x,y)在(0,0)的某

5、邻域内连续,且满足 (分数:2.50)A.取极大值B.取极小值C.不取极值D.无法确定是否取极值34.设 u=f(x+y,xz)有二阶连续的偏导数,则 (分数:2.50)A.f“2+xf“11+(x+z)f“12+xzf“22B.xf“12+xzf“22C.f“2+xf“12+xzf“22D.xzf“2235.函数 z=f(x,y)在点(x 0 ,y 0 )可偏导是函数 z=f(x,y)在点(x 0 ,y 0 )连续的_(分数:2.50)A.充分条件B.必要条件C.充分必要条件D.非充分非必要条件36.设可微函数 f(x,y)在点(x 0 ,y 0 )处取得极小值,则下列结论正确的是_(分数:

6、2.50)A.f(x0,y)在 y=y0 处导数为零B.f(x0,y)在 y=y0 处导数大于零C.f(x0,y)在 y=y0 处导数小于零D.f(x0,y)在 y=y0 处导数不存在考研数学三-406 (1)答案解析(总分:100.00,做题时间:90 分钟)一、填空题(总题数:29,分数:82.00)1. (分数:2.00)解析:解析 2. (分数:2.50)解析:3.设 z=e sin2xy ,则 dz= 1 (分数:2.50)解析:e sin2xy sin2xy(ydx+xdy) 4. (分数:2.50)解析:解析 5. (分数:2.50)解析: 解析 6.设 f(x,y)满足 (分数

7、:2.50)解析:y 2 +xy+1 解析 因为 f“ y (x,0)=x,所以 1 (x)=x,即 再由 7. 其中 f,g 二阶连续可导,则 (分数:2.50)解析: 解析 8.设 且 f(u,v)具有二阶连续的偏导数,则 (分数:2.50)解析: 解析 9.设 其中 f(u)可导,则 (分数:2.50)解析:2z解析 10.设 z=f(x 2 +y 2 +z 2 ,xyz)且 f 一阶连续可偏导,则 (分数:2.50)解析: 解析 z=f(x 2 +y 2 +z 2 ,xyz)两边对 x 求偏导得 11.设 y=y(x,z)是由方程 e x+y+z =x 2 +y 2 +z 2 确定的隐

8、函数,则 (分数:2.50)解析: 解析 e x+y+z =x 2 +y 2 +z 2 两边对 z 求偏导得 从而 12.设 z=f(x,y)是由 确定的函数,则 (分数:2.50)解析: 解析 将 代入 中得 z=0, 两边求微分得 2e2 yz (zdy+ydz)+dx+2ydy+dz=0,将 z=0 代入得 13.设 y=y(x)由 确定,则 (分数:2.50)解析:e-1 解析 当 x=0 时,y=1, 两边对 x 求导,得 将 x=0,y=1 代入得 14.设 z=z(x,y)由 z+ez=xy 2 确定,则 dz= 1 (分数:2.50)解析: 解析 方法一 z+e z =xy 2

9、 两边对 x 求偏导得 解得 z+e z =xy 2 两边对 y 求偏导得 解得 则 方法二 z+e z =xy 2 两边求微分得 d(z+e z )=d(xy 2 ),即 dz+e z dz=y 2 dx+2xydy,解得 15.设 z=f(x+y,y+z,z+x),其中 f 连续可偏导,则 (分数:2.50)解析:解析 z=f(x+y,y+z,z+x)两边求 x 求偏导得 解得16.设 其中 f 可导,则 (分数:2.50)解析:z+xy 解析 17.由方程 (分数:2.50)解析: 解析 两边求微分得 把(1,0,-1)代入上式得 18.设 f(x,y,z)=e x yz 2 ,其中 z

10、=z(x,y)是由 x+y+z+xyz=0 确定的隐函数,则 f“ x (0,1,-1)= 1 (分数:2.50)解析:1 解析 x+y+z+xyz=0 两边对 x 求偏导得 将 x=0,y=1,z=-1 代入得 19.设 f(x,y)可微,且 f“ 1 (-1,3)=-2,f“ 2 (-1,3)=1,令 (分数:2.50)解析:-7dx+3dy 解析 20. (分数:3.50)解析:解析 21. (分数:3.50)解析: 解析 其中 D 1 =(x,y)|0x1,0y1-x, 22. (分数:3.50)解析: 解析 改变积分次序得 23.设 f(x,y)连续,且 (分数:3.50)解析: 解

11、析 令 则 f(x,y)=xy+k,两边在 D 上积分得 24.设 f(x,y)在点(0,0)的邻域内连续, (分数:3.50)解析:2f(0,0) 解析 25. (分数:3.50)解析: 解析 26.设 D:x 2 +y 2 R 2 ,则 (分数:3.50)解析: 解析 27.设 f(x)在0,1上连续,且 则 (分数:3.50)解析: 解析 28. (分数:3.50)解析: 解析 29. (分数:3.50)解析:1-sin1 解析 二、选择题(总题数:7,分数:18.00)30.设 (分数:3.00)A.对 x 可偏导,对 y 不可偏导B.对 x 不可偏导,对 y 可偏导 C.对 x 可偏

12、导,对 y 也可偏导D.对 x 不可偏导,对 y 也不可偏导解析:解析 因为 不存在,所以 f(x,y)在(0,0)处对 x 不可偏导, 因为 31.设 f“ x (x 0 ,y 0 ),f“ y (x 0 ,y 0 )都存在,则_ Af(x,y)在(x 0 ,y 0 )处连续 B Cf(x,y)在(x 0 ,y 0 )处可微 D (分数:2.50)A.B.C.D. 解析:解析 多元函数在一点可偏导不一定在该点连续,A 不对; 函数 在(0,0)处可偏导,但 不存在,B 不对;f(x,y)在(x 0 ,y 0 )处可偏导是可微的必要而非充分条件,C 不对,应选 D,事实上由 存在,得 32.设

13、 f(x,y)在点(0,0)的某邻域内连续,且满足 (分数:2.50)A.取极大值 B.取极小值C.不取极值D.无法确定是否有极值解析:解析 因为 根据极限保号性,存在 0,当 时,有 而 所以当33.设 f(x,y)在(0,0)的某邻域内连续,且满足 (分数:2.50)A.取极大值 B.取极小值C.不取极值D.无法确定是否取极值解析:解析 因为 所以由极限的保号性,存在 0,当 时, 因为当 时,|x|+y 2 0,所以当 0 34.设 u=f(x+y,xz)有二阶连续的偏导数,则 (分数:2.50)A.f“2+xf“11+(x+z)f“12+xzf“22B.xf“12+xzf“22C.f“

14、2+xf“12+xzf“22 D.xzf“22解析:解析 35.函数 z=f(x,y)在点(x 0 ,y 0 )可偏导是函数 z=f(x,y)在点(x 0 ,y 0 )连续的_(分数:2.50)A.充分条件B.必要条件C.充分必要条件D.非充分非必要条件 解析:解析 如 在点(0,0)处可偏导,但不连续; 又如 36.设可微函数 f(x,y)在点(x 0 ,y 0 )处取得极小值,则下列结论正确的是_(分数:2.50)A.f(x0,y)在 y=y0 处导数为零 B.f(x0,y)在 y=y0 处导数大于零C.f(x0,y)在 y=y0 处导数小于零D.f(x0,y)在 y=y0 处导数不存在解析:解析 可微函数 f(x,y)在点(x 0 ,y 0 )处取得极小值,则有 f“ x (x 0 ,y 0 )=0,f“ y (x 0 ,y 0 )=0,于是 f(x 0 ,y)在 y=y 0 处导数为零,选 A

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1