ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:176KB ,
资源ID:1395327      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1395327.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【考研类试卷】考研数学三(线性代数)-试卷23及答案解析.doc)为本站会员(fuellot230)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

【考研类试卷】考研数学三(线性代数)-试卷23及答案解析.doc

1、考研数学三(线性代数)-试卷 23 及答案解析(总分:86.00,做题时间:90 分钟)一、选择题(总题数:14,分数:28.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.若向量组 1 , 2 , 3 , 4 线性相关,且向量 4 不可由向量组 1 , 2 , 3 线性表示,则下列结论正确的是( )(分数:2.00)A. 1 , 2 , 3 线性无关B. 1 , 2 , 3 线性相关C. 1 , 2 , 4 线性无关D. 1 , 2 , 4 线性相关3.设矩阵 A=( 1 , 2 , 3 , 4 )经行初等变换为矩阵 B=( 1 , 2 , 3 ,

2、 4 ),且 1 , 2 , 3 线性无关, 1 , 2 , 3 , 4 线性相关,则( )(分数:2.00)A. 4 不能由 1 , 2 , 3 线性表示B. 4 能由 1 , 2 , 3 线性表示,但表示法不唯一C. 4 能由 1 , 2 , 3 线性表示,且表示法唯一D. 4 能否由 1 , 2 , 3 线性表示不能确定4.设 A=( 1 , 2 , m ),若对于任意不全为零的常数 k 1 ,k 2 ,k m ,皆有 k 1 1 +k 2 2 +k m m 0,则( )(分数:2.00)A.mnB.m=nC.存在 m 阶可逆阵 P,使得 AP=D.若 AB=O,则 B=O5.下列命题正

3、确的是( )(分数:2.00)A.若向量 1 , 2 , n 线性无关,A 为 n 阶非零矩阵,则 A 1 ,A 2 ,A n 线性无关B.若向量 1 , 2 , n 线性相关,则 1 , 2 , n 中任一向量都可由其余向量线性表示C.若向量 1 , 2 , n 线性无关,则 1 + 2 , 2 + 3 , n + 1 一定线性无关D.设 1 , 2 , n 是 n 个 n 维向量且线性无关,A 为 n 阶非零矩阵,且 A 1 ,A 2 ,A n 线性无关,则 A 一定可逆6.向量组 1 , 2 , m 线性无关的充分必要条件是( )(分数:2.00)A. 1 , 2 , m 中任意两个向量

4、不成比例B. 1 , 2 , m 是两两正交的非零向量组C.设 A=( 1 , 2 , m ),方程组 AX=0 只有零解D. 1 , 2 , m 中向量的个数小于向量的维数7.设 A 是 mn 矩阵,且 mn,下列命题正确的是( )(分数:2.00)A.A 的行向量组一定线性无关B.非齐次线性方程组 Ax=b 一定有无穷多组解C.A T A 一定可逆D.A T A 可逆的充分必要条件是 r(A)=n8.设 A,B 是满足 AB=O 的任意两个非零阵,则必有( )(分数:2.00)A.A 的列向量组线性相关,B 的行向量组线性相关B.A 的列向量组线性相关,B 的列向量组线性相关C.A 的行向

5、量组线性相关,B 的行向量组线性相关D.A 的行向量组线性相关,B 的列向量组线性相关9.设 1 , 2 , m 与 1 , 2 , s 为两个 n 维向量组,且 r( 1 , 2 , m )=r( 1 , 2 , s )=r,则( )(分数:2.00)A.两个向量组等价B.r( 1 , 2 , m , 1 , 2 , s )=rC.若向量组 1 , 2 , m 可由向量组 1 , 2 , s 线性表示,则两向量组等价D.两向量组构成的矩阵等价10.设 A 是 ms 矩阵,B 为 sn 矩阵,则方程组 BX=0 与 ABX=0 同解的充分条件是( )(分数:2.00)A.r(A)=sB.r(A

6、)=mC.r(B)=sD.r(B)=n11.设 n 阶矩阵 A 的伴随矩阵 A * O,且非齐次线性方程组 AX=b 有两个不同解 1 , 2 ,则下列命题正确的是( )(分数:2.00)A.AX=b 的通解为 k 1 1 +k 2 2B. 1 + 2 为 AX=b 的解C.方程组 AX=0 的通解为 k( 1 一 2 )D.AX=b 的通解为 k 1 1 +k 2 2 + 12.设有方程组 AX=0 与 BX=0,其中 A,B 都是 mn 矩阵,下列四个命题: (1)若 AX=0 的解都是 BX=0 的解,则 r(A)r(B) (2)若 r(A)r(B),则 AX=0 的解都是 BX=0 的

7、解 (3)若 AX=0 与 BX=0 同解,则 r(A)=r(B) (4)若 r(A)=r(B),则 AX=0 与 BX=0 同解 以上命题正确的是( )(分数:2.00)A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)13.设 A 是 mn 矩阵,B 是 nm 矩阵,则( )(分数:2.00)A.当 mn 时,线性齐次方程组 ABX=0 有非零解B.当 mn 时,线性齐次方程组 ABX=0 只有零解C.当 nm 时,线性齐次方程组 ABX=0 有非零解D.当 nm 时,线性齐次方程组 ABX=0 只有零解14.设 A 为 mn 阶矩阵,则方程组 AX=b 有唯一解的充分必要条

8、件是( )(分数:2.00)A.r(A)=mB.r(A)=nC.A 为可逆矩阵D.r(A)=n 且 b 可由 A 的列向量组线性表示二、填空题(总题数:3,分数:6.00)15.设 (分数:2.00)填空项 1:_16.设 A= (分数:2.00)填空项 1:_填空项 1:_17.设 为非零向量,A= (分数:2.00)填空项 1:_三、解答题(总题数:26,分数:52.00)18.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_19.设向量组() 1 , 2 , 3 ;() 1 , 2 , 3 , 4 ;() 1 , 2 , 3 , 5 ,若向量组(I)与向量组()的秩为

9、3,而向量组()的秩为 4证明:向量组 1 , 2 , 3 , 5 4 的秩为 4(分数:2.00)_20.设 1 , 2 , n 为 n 个 n 维线性无关的向量,A 是 n 阶矩阵证明:A 1 ,A 2 ,A n 线性无关的充分必要条件是 A 可逆(分数:2.00)_21.设 1 , 2 , n 为 n 个 n 维列向量,证明: 1 , 2 , n 线性无关的充分必要条件是 (分数:2.00)_22.设 1 , 2 , t 为 AX=0 的一个基础解系, 不是 AX=0 的解,证明:,+ 1 ,+ 2 ,+ t 线性无关(分数:2.00)_23.设 1 , 2 , n 为 n 个 n 维向

10、量,证明: 1 , 2 , n 线性无关的充分必要条件是任一 n 维向量总可由 1 , 2 , n 线性表示(分数:2.00)_24.设 A 为 n 阶矩阵,若 A k-1 0,而 A k =0证明:向量组 ,A,A k-1 线性无关(分数:2.00)_25.设 1 , 2 , 1 , 2 为三维列向量组,且 1 , 2 与 1 , 2 都线性无关 (1)证明:至少存在一个非零向量可同时由 1 , 2 和 1 , 2 线性表示; (2)设 (分数:2.00)_26.设向量组 1 , 2 , n-1 为 n 维线性无关的列向量组,且与非零向量 1 , 2 正交证明: 1 , 2 线性相关(分数:

11、2.00)_27.设齐次线性方程组 (分数:2.00)_28.设 A 为三阶矩阵,A 的第一行元素为 a,b,c 且不全为零,又 B= (分数:2.00)_29.a,b 取何值时,方程组 (分数:2.00)_30.A,B 为 n 阶矩阵且 r(A)+r(B)n证明:方程组 AX=0 与 BX=0 有公共的非零解(分数:2.00)_31.设(I) , 1 , 2 , 3 , 4 为四元非齐次线性方程组 BX=b 的四个解,其中 1 = (分数:2.00)_32.设 (分数:2.00)_33.,问 a,b,c 取何值时,(I),()为同解方程组? (分数:2.00)_34. (分数:2.00)_3

12、5. (分数:2.00)_36.设 A 是 ms 矩阵,B 是 sn 矩阵,且 r(B)=r(AB)证明:方程组 BX=0 与 ABX=0 是同解方程组(分数:2.00)_37.设 A,B,C,D 都是 n 阶矩阵,r(CA+DB)=n (1)证明 (分数:2.00)_38.设 A 为 n 阶矩阵,A 11 0证明:非齐次线性方程组 AX=b 有无穷多个解的充分必要条件是 A * b=0(分数:2.00)_39.证明:r(AB)minr(A),r(B)(分数:2.00)_40.证明:r(A)=r(A T A)(分数:2.00)_41.设 A 是 mn 矩阵,且非齐次线性方程组 AX=b 满足

13、r(A)= (分数:2.00)_42.讨论方程组 (分数:2.00)_43.设 A= (分数:2.00)_考研数学三(线性代数)-试卷 23 答案解析(总分:86.00,做题时间:90 分钟)一、选择题(总题数:14,分数:28.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.若向量组 1 , 2 , 3 , 4 线性相关,且向量 4 不可由向量组 1 , 2 , 3 线性表示,则下列结论正确的是( )(分数:2.00)A. 1 , 2 , 3 线性无关B. 1 , 2 , 3 线性相关 C. 1 , 2 , 4 线性无关D. 1 , 2 ,

14、4 线性相关解析:解析:若 1 , 2 , 3 线性无关,因为 4 不可由 1 , 2 , 3 线性表示,所以口1,口 z,口 s,at 线性无关,矛盾,故 1 , 2 , 3 线性相关,选 B3.设矩阵 A=( 1 , 2 , 3 , 4 )经行初等变换为矩阵 B=( 1 , 2 , 3 , 4 ),且 1 , 2 , 3 线性无关, 1 , 2 , 3 , 4 线性相关,则( )(分数:2.00)A. 4 不能由 1 , 2 , 3 线性表示B. 4 能由 1 , 2 , 3 线性表示,但表示法不唯一C. 4 能由 1 , 2 , 3 线性表示,且表示法唯一 D. 4 能否由 1 , 2

15、, 3 线性表示不能确定解析:解析:因为 1 , 2 , 3 线性无关,而 1 , 2 , 3 , 4 线性相关,所以口。可由 1 , 2 , 3 唯一线性表示,又 A=( 1 , 2 , 3 , 4 )经过有限次初等行变换化为B=( 1 , 2 , 3 , 4 ),所以方程组 x 1 1 +x 2 2 +x 3 3 = 4 与 x 1 1 +x 2 2 +x 3 3 = 4 是同解方程组,因为方程组 x 1 1 +x 2 2 +x 3 3 = 4 有唯一解,所以方程组 x 1 1 +x 2 2 +x 3 3 = 4 有唯一解,即 4 可由 1 , 2 , 3 唯一线性表示,选C4.设 A=(

16、 1 , 2 , m ),若对于任意不全为零的常数 k 1 ,k 2 ,k m ,皆有 k 1 1 +k 2 2 +k m m 0,则( )(分数:2.00)A.mnB.m=nC.存在 m 阶可逆阵 P,使得 AP=D.若 AB=O,则 B=O 解析:解析:因为对任意不全为零的常数 k 1 ,k 2 ,k m ,有 k 1 1 +k 2 2 +k m m 0,所以向量组 1 , 2 , m 线性无关,即方程组 Ax=0 只有零解,故若 AB=O,则 B=O 选D5.下列命题正确的是( )(分数:2.00)A.若向量 1 , 2 , n 线性无关,A 为 n 阶非零矩阵,则 A 1 ,A 2 ,

17、A n 线性无关B.若向量 1 , 2 , n 线性相关,则 1 , 2 , n 中任一向量都可由其余向量线性表示C.若向量 1 , 2 , n 线性无关,则 1 + 2 , 2 + 3 , n + 1 一定线性无关D.设 1 , 2 , n 是 n 个 n 维向量且线性无关,A 为 n 阶非零矩阵,且 A 1 ,A 2 ,A n 线性无关,则 A 一定可逆 解析:解析:(A 1 ,A 2 ,A n )=A( 1 , 2 , n ),因为 1 , 2 , n 线性无关,所以矩阵( 1 , 2 , n )可逆,于是 r(A 1 ,A 2 ,A n )=r(A),而A 1 ,A 2 ,A n 线性

18、无关,所以 r(A)=n,即 A 一定可逆,选 D6.向量组 1 , 2 , m 线性无关的充分必要条件是( )(分数:2.00)A. 1 , 2 , m 中任意两个向量不成比例B. 1 , 2 , m 是两两正交的非零向量组C.设 A=( 1 , 2 , m ),方程组 AX=0 只有零解 D. 1 , 2 , m 中向量的个数小于向量的维数解析:解析:向量组 1 , 2 , m 线性无关,则 1 , 2 , m 中任意两个向量不成比例,反之不对,故 A 不对;若 1 , 2 , m 是两两正交的非零向量组,则 1 , 2 , m 一定线性无关但 1 , 2 , m 线性无关不一定两两正交B

19、 不对; 1 , 2 , m 中向量个数小于向量的维数不一定线性无关,D 不对,选 C7.设 A 是 mn 矩阵,且 mn,下列命题正确的是( )(分数:2.00)A.A 的行向量组一定线性无关B.非齐次线性方程组 Ax=b 一定有无穷多组解C.A T A 一定可逆D.A T A 可逆的充分必要条件是 r(A)=n 解析:解析:若 A T A 可逆,则 r(A T A)=n,因为 r(A T A)=r(A),所以 r(A)=n;反之,若 r(A)=n,因为r(A T A)=r(A),所以 A T A 可逆,选 D8.设 A,B 是满足 AB=O 的任意两个非零阵,则必有( )(分数:2.00)

20、A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关C.A 的行向量组线性相关,B 的行向量组线性相关D.A 的行向量组线性相关,B 的列向量组线性相关解析:解析:设 A,B 分别为 mn 及 ns 矩阵,因为 AB=O,所以 r(A)+r(B)n,因为 A,B 为非零矩阵,所以 r(A)1,r(B)1,从而 r(A)nr(B)n,故 A 的列向量组线性相关,B 的行向量组线性相关,选 A9.设 1 , 2 , m 与 1 , 2 , s 为两个 n 维向量组,且 r( 1 , 2 , m )=r( 1 , 2 , s )=r,则( )(分数:

21、2.00)A.两个向量组等价B.r( 1 , 2 , m , 1 , 2 , s )=rC.若向量组 1 , 2 , m 可由向量组 1 , 2 , s 线性表示,则两向量组等价D.两向量组构成的矩阵等价解析:解析:不妨设向量组 1 , 2 , m 的极大线性无关组为 1 , 2 , r ,向量组 1 , 2 , s 的极大线性无关组为 1 , 2 , s ,若 1 , 2 , m 可由 1 , 2 , s 线性表示,则 1 , 2 , r 也可由 1 , 2 , r 线性表示,若 1 , 2 , r 不可由 1 , 2 , r 线性表示,则 1 , 2 , s 也不可由 1 , 2 , m

22、线性表示,所以两向量组秩不等,矛盾,选 C10.设 A 是 ms 矩阵,B 为 sn 矩阵,则方程组 BX=0 与 ABX=0 同解的充分条件是( )(分数:2.00)A.r(A)=s B.r(A)=mC.r(B)=sD.r(B)=n解析:解析:设 r(A)=s,显然方程组 BX=0 的解一定为方程组 ABX=0 的解,反之,若 ABX=0,因为 r(A)=s,所以方程组 AY=0 只有零解,故 BX=0,即方程组 BX=0 与方程组 ABX=0 同解,选 A11.设 n 阶矩阵 A 的伴随矩阵 A * O,且非齐次线性方程组 AX=b 有两个不同解 1 , 2 ,则下列命题正确的是( )(分

23、数:2.00)A.AX=b 的通解为 k 1 1 +k 2 2B. 1 + 2 为 AX=b 的解C.方程组 AX=0 的通解为 k( 1 一 2 ) D.AX=b 的通解为 k 1 1 +k 2 2 + 解析:解析:因为非齐次线性方程组 AX=b 的解不唯一,所以 r(A)n,又因为 A * O,所以 r(A)=n 一1,l, 2 一 1 为齐次线性方程组 AX=0 的基础解系,选 C12.设有方程组 AX=0 与 BX=0,其中 A,B 都是 mn 矩阵,下列四个命题: (1)若 AX=0 的解都是 BX=0 的解,则 r(A)r(B) (2)若 r(A)r(B),则 AX=0 的解都是

24、BX=0 的解 (3)若 AX=0 与 BX=0 同解,则 r(A)=r(B) (4)若 r(A)=r(B),则 AX=0 与 BX=0 同解 以上命题正确的是( )(分数:2.00)A.(1)(2)B.(1)(3) C.(2)(4)D.(3)(4)解析:解析:若方程组 AX=0 的解都是方程组 BX=0 的解,则 n 一 r(A)n 一 r(B),从而 r(A)r(B),(1)为正确的命题;显然(2)不正确;因为同解方程组系数矩阵的秩相等,但反之不对,所以(3)是正确的,(4)是错误的,选 B13.设 A 是 mn 矩阵,B 是 nm 矩阵,则( )(分数:2.00)A.当 mn 时,线性齐

25、次方程组 ABX=0 有非零解 B.当 mn 时,线性齐次方程组 ABX=0 只有零解C.当 nm 时,线性齐次方程组 ABX=0 有非零解D.当 nm 时,线性齐次方程组 ABX=0 只有零解解析:解析:仙为 m 阶方阵,当 mn 时,因为 r(A)n,r(B)n 且 r(AB)minr(A),r(B),所以r(AB)m,于是方程组 ABX=0 有非零解,选 A14.设 A 为 mn 阶矩阵,则方程组 AX=b 有唯一解的充分必要条件是( )(分数:2.00)A.r(A)=mB.r(A)=nC.A 为可逆矩阵D.r(A)=n 且 b 可由 A 的列向量组线性表示 解析:解析:方程组 AX=b

26、 有解的充分必要条件是 b 可由矩阵 A 的列向量组线性表示,在方程组 AX=b 有解的情形下,其有唯一解的充分必要条件是 r(A)=n,故选 D二、填空题(总题数:3,分数:6.00)15.设 (分数:2.00)填空项 1:_ (正确答案:正确答案: )解析:解析:( 1 , 2 , 3 , 4 )= 则向量组 1 , 2 , 3 , 4 的一个极大线性无关组为 1 , 2 ,且 16.设 A= (分数:2.00)填空项 1:_ (正确答案:正确答案:2)填空项 1:_ (正确答案:1)解析:解析:A17.设 为非零向量,A= (分数:2.00)填空项 1:_ (正确答案:正确答案:3,k(

27、一 3,1,2) T)解析:解析:AX=0 有非零解,所以A=0,解得 a=3,于是 A= 三、解答题(总题数:26,分数:52.00)18.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_解析:19.设向量组() 1 , 2 , 3 ;() 1 , 2 , 3 , 4 ;() 1 , 2 , 3 , 5 ,若向量组(I)与向量组()的秩为 3,而向量组()的秩为 4证明:向量组 1 , 2 , 3 , 5 4 的秩为 4(分数:2.00)_正确答案:(正确答案:因为向量组()的秩为 3,所以 1 , 2 , 3 线性无关,又因为向量组()的秩也为 3,所以向量 4 可由向量

28、组 1 , 2 , 3 线性表示 因为向量组()的秩为 4,所以 1 , 2 , 3 , 5 线性无关,即向量 5 不可由向量组 1 , 2 , 3 线性表示,故向量 5 - 4 不可由 1 , 2 , 3 线性表示,所以 1 , 2 , 3 , 5 一 4 线性无关,于是向量组 1 , 2 , 3 , 5 一 4 的秩为 4)解析:20.设 1 , 2 , n 为 n 个 n 维线性无关的向量,A 是 n 阶矩阵证明:A 1 ,A 2 ,A n 线性无关的充分必要条件是 A 可逆(分数:2.00)_正确答案:(正确答案:令 B=( 1 , 2 , n ),因为 1 , 2 , n 为 n 个

29、 n 维线性无关的向量,所以 r(B)=n(A 1 ,A 2 ,A n )=AB,因为 r(AB)=r(A),所以 A 1 ,A 2 ,A n 线性无关的充分必要条件是 r(A)=n,即 A 可逆)解析:21.设 1 , 2 , n 为 n 个 n 维列向量,证明: 1 , 2 , n 线性无关的充分必要条件是 (分数:2.00)_正确答案:(正确答案:令 A=( 1 , 2 , n ),A T A= ,r(A)=r(A T A),向量组 1 , 2 , n 线性无关的充分必要条件是 r(A) T =n,即 r(ATA)=n 或A T A0,从而 1 , 2 , n 线性无关的充分必要条件是

30、)解析:22.设 1 , 2 , t 为 AX=0 的一个基础解系, 不是 AX=0 的解,证明:,+ 1 ,+ 2 ,+ t 线性无关(分数:2.00)_正确答案:(正确答案:由 1 , 2 , t 线性无关, 1 , 2 , t 线性无关, 令 k+k 1 (+ 1 )+k 2 (+ 2 )+k t (+ t )=0,即(k+k 1 +k t )+k 1 1 +k t t =0, , 1 , 2 , t 线性无关 )解析:23.设 1 , 2 , n 为 n 个 n 维向量,证明: 1 , 2 , n 线性无关的充分必要条件是任一 n 维向量总可由 1 , 2 , n 线性表示(分数:2.

31、00)_正确答案:(正确答案:设 1 , 2 , n 线性无关,对任意的 n 维向量 a,因为 1 , 2 , n , 一定线性相关,所以 可由 1 , 2 , n 唯一线性表示,即任一 n 维向量总可由 1 , 2 , n 线性表示 反之,设任一 n 维向量总可由 1 , 2 , n 线性表示, 取 )解析:24.设 A 为 n 阶矩阵,若 A k-1 0,而 A k =0证明:向量组 ,A,A k-1 线性无关(分数:2.00)_正确答案:(正确答案:令 l 0 +l 1 A+l k-1 A k-1 =0(*)(*)两边同时左乘 A k-1 得 l 0 A k-1 =0,因为 A k-1

32、0,所以 l 0 =0;(*)两边同时左乘 A k-2 得 l 1 A k-1 =0,因为 A k-1 0,所以 l=0,依次类推可 l 2 =l k-1 =0,所以 ,A,A k-1 线性无关)解析:25.设 1 , 2 , 1 , 2 为三维列向量组,且 1 , 2 与 1 , 2 都线性无关 (1)证明:至少存在一个非零向量可同时由 1 , 2 和 1 , 2 线性表示; (2)设 (分数:2.00)_正确答案:(正确答案:(1)因为 1 , 2 , 1 , 2 线性相关,所以存在不全为零的常数 k 1 ,k 2 ,l 1 ,l 2 ,使得 k 1 1 +k 2 2 +l 1 1 +l

33、2 2 =0,或 k 1 1 +k 2 2 =-l 1 1 -l 2 2 令 y=k 1 1 +k 2 2 =-l 1 1 -l 2 2 ,因为 1 , 2 与 1 , 2 都线性无关,所以 k 1 ,k 2 及 l 1 ,l 2 都不全为零,所以 0 (2)令 k 1 1 +k 2 2 +l 1 1 +l 2 2 =0, )解析:26.设向量组 1 , 2 , n-1 为 n 维线性无关的列向量组,且与非零向量 1 , 2 正交证明: 1 , 2 线性相关(分数:2.00)_正确答案:(正确答案:令 A= )解析:27.设齐次线性方程组 (分数:2.00)_正确答案:(正确答案:D= =a+(n 一 1)b-(a 一 b) n-1 (1)当 ab,a(1 一 n)b 时,方程组只有零解; (2)当 a=b 时,方程组的同解方程组为 x 1 +x 2 +x n =0,其通解为 X=k 1 (一1,1,0,0) T +k 2 (一 1,0,1,0) T +k n-1 (一 1,0,0,1) T (k 1 ,k 2 ,k n-1 为任意常数); (3)令 A= )解析:28.设 A 为三阶矩阵,A 的第一行元素为 a,b,c 且不全为零,又 B= (分数:2.00)_

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1