ImageVerifierCode 换一换
格式:PDF , 页数:13 ,大小:216.48KB ,
资源ID:287126      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-287126.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E346 - 08e1 Standard Test Methods for Analysis of Methanol (Withdrawn 2017).pdf)为本站会员(孙刚)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E346 - 08e1 Standard Test Methods for Analysis of Methanol (Withdrawn 2017).pdf

1、Designation: E346 081Standard Test Methods forAnalysis of Methanol1This standard is issued under the fixed designation E346; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicat

2、es the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1NOTESection 2.1 Referenced Documents was editorially corrected in June 2014.1. Scope*1.1

3、These test methods cover chemical and physical tests formeasuring the quality of methanol and appear in the followingorder:SectionsPurity of Reagents 4Safety Precautions 5Sampling 6Acidity 7 to 9Carbonizables 10 to 18Color 19 to 21Distillation Range 22 to 24Permanganate Time 25 to 27Specific Gravity

4、 28 to 30Water 31 to 33Water Miscibility 34 to 36Ethanol 37 to 47Acetone 48 to 55Trimethylamine 56 to 651.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.3 Review the current Material Safety Data Sheets (MSDS)for detailed in

5、formation concerning toxicity, first aid proce-dures and safety precautions for the chemicals used in thisstandard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate

6、safety and health practices and determine the applica-bility of regulatory limitations prior to use. Specific hazardsstatements are given in Sections 5 and 15 and in 16.1, 16.4, and52.2.2.2. Referenced Documents2.1 ASTM Standards:2D891 Test Methods for Specific Gravity,Apparent, of LiquidIndustrial

7、ChemicalsD1078 Test Method for Distillation Range of Volatile Or-ganic LiquidsD1193 Specification for Reagent WaterD1209 Test Method for Color of Clear Liquids (Platinum-Cobalt Scale)D1363 Test Method for Permanganate Time of Acetone andMethanolD1613 Test Method for Acidity in Volatile Solvents andC

8、hemical Intermediates Used in Paint, Varnish, Lacquer,and Related ProductsD1722 Test Method for Water Miscibility of Water-SolubleSolventsE180 Practice for Determining the Precision of ASTMMethods for Analysis and Testing of Industrial and Spe-cialty Chemicals (Withdrawn 2009)3E203 Test Method for W

9、ater Using Volumetric Karl FischerTitrationE300 Practice for Sampling Industrial ChemicalsE1140 Practice for Testing Nitrogen/Phosphorus ThermionicIonization Detectors for Use In Gas Chromatography3. Significance and Use3.1 These test methods are suitable for manufacturing con-trol and for determini

10、ng compliance with specification limitsfor the properties designated by the test methods. For those testmethods that use the procedure given in other ASTM methods,1These test methods are under the jurisdiction of ASTM Committee D16 onAromatic Hydrocarbons and Related Chemicals and are the direct res

11、ponsibility ofSubcommittee D16.16 on Industrial and Specialty Product Standards.Current edition approved Dec. 15, 2008. Published January 2009. Originallyapproved in 1968 as E346 68 T. Last previous edition approved in 2003 asE346 99 (2003)1. DOI: 10.1520/E0346-08E01.2For referenced ASTM standards,

12、visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The last approved version of this historical standard is referenced onwww.astm.org.*A Summar

13、y of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesNOTICE: This standard has either been superseded and replaced by a new version or withdrawn.Contact ASTM International (www.astm.or

14、g) for the latest information1those test methods should be consulted for additional informa-tion on the significance, use, and possible interferences.4. Purity of Reagents4.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, it is intended thatall reage

15、nts shall conform to the specifications of the Commit-tee on Analytical Reagents of the American Chemical Society,where such specifications are available.4Other grades may beused, provided it is first ascertained that the reagent is ofsufficiently high purity to permit its use without lessening thea

16、ccuracy of the determination.4.2 Unless otherwise indicated, references to water shall beunderstood to mean Type II or III reagent water conforming toSpecification D1193. It is essential that the reagent water befree of ammonia when used in the method for acetone.5. Hazards5.1 Methanol is toxic both

17、 as a liquid and as a vapor, and isdangerous if not properly handled. Avoid any skin contact.Clothing contaminated with methanol should be removedimmediately. Any body exposure to methanol requires imme-diate medical attention.5.2 Methanol is flammable and its vapor is explosive in therange from 6.0

18、 to 36.5 volume % in air. Any spills should beflushed away promptly with water.6. Sampling6.1 Sampling is not within the scope of these test methods.It should be understood, however, that reference to a “sample”means a representative portion of methanol contained in asingle container submitted for t

19、est. The sample submittedshould be sufficient to make all tests without reuse of anyfraction. For details of sampling methanol, refer to PracticeE300.ACIDITY7. Procedure7.1 Determine the acidity of the methanol as acetic acidusing the titration method as described in Test Method D1613.8. Report8.1 F

20、or concentrations of acetic acid at the 0.0010 % mass(m/m) level, report the results to the nearest 0.0001 % mass(m/m). For concentrations at the 0.010 % masss (m/m) level,report the results to the nearest 0.001 % mass (m/m).9. Precision and Bias9.1 PrecisionThe following criteria should be used for

21、judging the acceptability of results (Note 1):9.1.1 Repeatability (Single Analyst)The standard devia-tion for a single determination has been estimated to be theabsolute percentage value in Table 1 at the indicated degrees offreedom (df). The 95 % limit for the difference between twosuch runs is the

22、 absolute percentage value in the table.9.1.2 Laboratory Precision (Within-Lab Between-Days)The standard deviation of results (each the average ofduplicates), obtained by the same analyst on different days, hasbeen estimated to be the absolute percentage value in Table 1at the indicated degrees of f

23、reedom. The 95 % limit for thedifference between two such averages is the absolute percent-age value in the table.9.1.3 Reproducibility (Multilaboratory)The standard de-viation of results (each the average of duplicates), obtained byanalysts in different laboratories, has been estimated to be theabs

24、olute percentage value in Table 1 at the indicated degrees offreedom. The 95 % limit for the difference between two suchaverages is the absolute percentage value in the table.NOTE 1The above precision estimates are based on an interlaboratorystudy performed on two samples of methanol containing appr

25、oximately0.0010 and 0.01 % mass (m/m) acetic acid. A total of nine laboratoriescooperated in the studies in which duplicate determinations were per-formed on each of two days. Practice E180 was used in developing theseprecision estimates.9.2 BiasThe bias of this test method has not been deter-mined

26、due to the unavailability of suitable reference materials.CARBONIZABLES10. Scope10.1 This test method describes a procedure for detectingthe presence of impurities in methanol that carbonize or darkenin the presence of concentrated sulfuric acid. The test methodis applicable to methanol having a car

27、bonizables content in therange from 0 to 70 on the platinum-cobalt scale (see TestMethod D1209).11. Summary of Test Method11.1 Methanol is mixed with a known volume of concen-trated sulfuric acid under controlled conditions. The colorformed by the action of the acid on the carbonizable impurities4Re

28、agent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For suggestions on the testing of reagents notlisted by the American Chemical Society, see Analar Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaa

29、nd National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.TABLE 1 Acidity Precision Values, % Acetic AcidLevel,%mass (m/m)Repeatability Laboratory Precision Within-Lab, Between-Days ReproducibilityStandardDeviationDegrees ofFreedom95 % LimitStandardDeviationDegrees ofFreedom95

30、% LimitStandardDeviationDegrees ofFreedom95 % Limit0.0010 0.000067 18 0.0002 0.000065 18 0.0002 0.00024 8 0.000070.010 0.00034 18 0.001 0.000437 18 0.001 0.00061 8 0.002E346 0812in the methanol is estimated by comparison of the test mixturewith platinum-cobalt color standards.12. Significance and Us

31、e12.1 Because this test is designed to measure low concen-trations of impurities that carbonize or darken in the presenceof concentrated sulfuric acid, erroneously high results may beobtained if all glassware is not cleaned as described in theprocedure.13. Apparatus13.1 Erlenmeyer Flask, 125-mL boro

32、silicate glass.13.2 Nessler Tubes, 50-mL high form, matched.13.3 Ring Stand.13.4 Buret, 25-mL, with TFE-fluorocarbon stopcock.NOTE 2A 25-mL automatic buret graduated in 0.1-mL incrementsprovides a safe convenient way of dispensing the sulfuric acid and protectsthe acid from dust and other contaminat

33、ion.13.5 Electric Stirrer and Bar.14. Reagents14.1 Sulfuric AcidConcentrated sulfuric acid (sp gr 1.84).14.2 Platinum-Cobalt Stock Solution and Color Standards,made in accordance with Test Method D1209.15. Hazards15.1 Concentrated sulfuric acid is corrosive; contact withthe body is to be avoided at

34、all times. Use proper protectiveequipment, including adequate eye protection. If the eyes areaffected or if a burn results, obtain immediate medical atten-tion.16. Procedure16.1 All glass apparatus used for this test must be kept freeof materials which produce color with sulfuric acid. Clean allglas

35、sware in a dichromate-sulfuric acid cleaning solutionfollowed by rinsings with tap water and reagent water. Drywith clean air or rinse with methanol that is known to give littleor no color with sulfuric acid. (WarningDo not use acetoneto dry apparatus.)16.2 Transfer 50 mL of the proper platinum-coba

36、lt colorstandard into one of the matched 50-mL Nessler tubes.16.3 Pipet 30 mL of the sample into a 125-mL Erlenmeyerflask.16.4 Add, at a uniform rate, 25 mL of H2SO4to the samplewhile stirring constantly using an electric stirrer and stirringbar. The total time of the acid addition shall be 5 min 6

37、30 s.(WarningDo not cool the mixture.)16.5 Allow the mixture to stand for 15 min 6 30 s at roomtemperature, pour the mixture from the flask into a 50-mLNessler tube and compare the color of the sample to the properplatinum-cobalt standard by looking down through the longi-tudinal axis of the tubes u

38、pon a white or mirrored surface atsuch an angle that light is reflected through the column ofliquid. Hold the tubes at some convenient height 50 to 150 mmfrom the surface.17. Report17.1 According to the type of specification used, this testcan be made to give specific color readings or be simply a g

39、o,no-go test.17.2 When specific color readings are required, report theplatinum-cobalt color to the nearest 5 units. Averages ofduplicate determinations should be reported to the nearest 2.5units.18. Precision and Bias18.1 PrecisionThe following criteria should be used forjudging the acceptability o

40、f results (see Note 3):18.1.1 Repeatability (Single Analyst)The standard devia-tion for a single determination has been estimated to be 1.7units at 21 df. The 95 % limit for the difference between twosuch runs is 5 units.18.1.2 Laboratory Precision (Within-Lab Between-Days)The standard deviation of

41、results (each the average ofduplicates), obtained by the same analyst on different days, hasbeen estimated to be the value in Table 2 at the indicateddegrees of freedom. The 95 % limit for the difference betweentwo such averages is the value in the table.18.1.3 Reproducibility (Multilaboratory)The s

42、tandard de-viation of results (each the average of duplicates), obtained byanalysts in different laboratories, has been estimated to be thevalue shown in Table 2 at the indicated degrees of freedom.The 95 % limit for the difference between two such averages isthe value in the table.NOTE 3The precisi

43、on estimates in Table 2 are based on an interlabo-ratory study performed on three samples at the color levels listed. Oneanalyst in each of seven laboratories performed duplicate measurementson each of two days. Practice E180 was used in developing these precisionestimates.18.2 BiasThe bias of this

44、test method has not beendetermined due to the unavailability of suitable referencematerials.COLOR19. Procedure19.1 Determine the color of the methanol as described inTest Method D1209.TABLE 2 Carbonizables Precision Values, Pt-Co UnitsPt-Co LevelLaboratory Precision Within-Lab, Between-Days Reproduc

45、ibilityStandard DeviationDegrees ofFreedom95 % Limit Standard DeviationDegrees ofFreedom95 % Limit5113326 515 1 13 3 3 6 1060 1 13 3 5 6 15E346 081320. Report20.1 Estimate and report the color of the methanol to thenearest 1 Pt-Co unit.21. Precision and Bias21.1 PrecisionThe following criteria shoul

46、d be used forjudging the acceptability of results (see Note 4):21.1.1 Repeatability (Single Analyst)The standard devia-tion for a single determination has been estimated to be 0.7units at 36 df. The 95 % limit for the difference between twosuch runs is 2 units.21.1.2 Laboratory Precision (Within-Lab

47、 Between-Days)The standard deviation of results (each the average ofduplicates), obtained by the same analyst on different days, hasbeen estimated to be the value in Table 3 at the indicateddegrees of freedom. The 95 % limit for the difference betweentwo such averages is the value in the table.21.1.

48、3 Reproducibility (Multilaboratory)The standard de-viation of results (each the average of duplicates), obtained byanalysts in different laboratories, has been estimated to be thevalue shown in Table 3 at the indicated degrees of freedom.The 95 % limit for the difference between two such averages is

49、the value in the table.NOTE 4The above precision estimates are based on an interlaboratorystudy performed on two samples of methanol having Pt-Co color values of0 and 10 respectively. One analyst in each of eight laboratories performedduplicate measurements on each of two days. Practice E180 was used indeveloping these precision estimates.21.2 BiasThe bias of this test method has not beendetermined due to the unavailability of suitable referencematerials.DISTILLATION RANGE22. Procedure22.1 Determine the distillation range of the methan

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1