ImageVerifierCode 换一换
格式:PDF , 页数:12 ,大小:589.59KB ,
资源ID:291255      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-291255.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM F3287-17e1 Standard Test Method for Nondestructive Detection of Leaks in Packages by Mass Extraction Method1,2.pdf)为本站会员(bowdiet140)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM F3287-17e1 Standard Test Method for Nondestructive Detection of Leaks in Packages by Mass Extraction Method1,2.pdf

1、Designation: F3287 171Standard Test Method forNondestructive Detection of Leaks in Packages by MassExtraction Method1,2This standard is issued under the fixed designation F3287; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the y

2、ear of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEEditorial corrections were made in May 2018.1. Scope1.1 This method provides a nondestructive means to detectholes (le

3、aks) in a variety of non-porous rigid and semi-rigidpackages.1.2 This test method detects package leaks by measuring themass flow extracted from a package while the package isenclosed inside an evacuated test chamber. The test system isa closed system during the leakage measurement portion of thetes

4、t cycle. The closed system includes a vacuum reservoir,Intelligent Molecular Flow Sensor (IMFS), and vacuum testchamber. Mass extracted from the test package into the vacuumtest chamber flows to the vacuum reservoir through the IMFSto equalize the system. Mass flow rate from the vacuumchamber to the

5、 vacuum reservoir is measured by the IMFS.Based on the conservation of mass law, mass flow into theclosed system is equal to the mass loss from the test package.The test system is capable of producing quantitative (variabledata) or qualitative (pass/fail) results depending on the require-ments.1.2.1

6、 Headspace gas leakage defects equivalent to a 1mdiameter glass micropipette (sharp edge defect) can be detectedat a 95% confidence level.1.2.2 Liquid leakage defects equivalent to a 1m diameterglass micropipette can be detected at a 95% confidence levelfor glass vials and LDPE bottles. Liquid leaka

7、ge defectsequivalent toa2mdiameter glass micropipette can bedetected for glass syringes.1.3 UnitsThe values stated in SI units are to be regardedas standard. Pressure units are expressed as Pa, mbar, or Torr.1.4 This standard does not purport to address all of thesafety concerns, if any, associated

8、with its use. It is theresponsibility of the user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accor-dance with internationally recognize

9、d principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:3E177 Practice for Use of

10、the Terms Precision and Bias inASTM Test MethodsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodF17 Terminology Relating to Primary Barrier Packaging2.2 ISO Standard:4ISO/IEC 17025 General requirements for the competence oftesting and calibration labor

11、atories3. Terminology3.1 For terminology related to primary barrier packaging,see Terminology F17.3.2 Definitions of Terms Specific to This Standard:3.2.1 baseline flow measurement, nmeasured flow rate fora negative control test package. Measured flow is largelyattributed to characteristics of the p

12、ackage (material type,labels, etc.).3.2.2 blank master part, na piece of metal tooling withsimilar volume and shape as the actual test package. This isused to represent a leak free package.1This test method is under the jurisdiction ofASTM Committee F02 on PrimaryBarrier Packaging and is the direct

13、responsibility of Subcommittee F02.40 onPackage Integrity.Current edition approved Nov. 1, 2017. Published November 2017. DOI:10.1520/F3287-17.2Mass Extraction is covered by patents (1, 2). If you are aware of analternative(s) to the patented item, please attach to your ballot return a descriptionof

14、 the alternatives. All suggestions will be considered by the committee. Ifalternatives are identified, the committee shall reconsider whether the patented itemis necessary. The committee, in making its decision, shall follow Regulation 15.3For referenced ASTM standards, visit the ASTM website, www.a

15、stm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.4Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi

16、.org.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of

17、International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.13.2.3 chamber base, nlower portion of a vacuum testchamber that is connected to the mass extraction test instru-ment. Chamber base commonly includes an o-ring to se

18、al thechamber lid onto the base. The chamber base also contains anest to contain the test package. Nest configuration is depen-dent on test package features.3.2.4 chamber lid, nupper portion of a vacuum testchamber. The chamber lid commonly conforms to the portionof the test package that extends abo

19、ve the chamber base.3.2.5 container closure integrity test (CCIT), na methodto determine if a package is sealed to a specified level.3.2.6 glass micropipette, na thin glass tube that includes aspecific diameter within 620% of specification at the tip of thecapillary tube. Micropipettes are independe

20、ntly qualified bysupplier. Flow paths of this nature are commonly designated assharp edge (SE) holes. This can be used to represent a hole ofa specific diameter when inserted into a package.3.2.7 gross leak (GL) check, npreliminary step in the leakdetection process where chamber pressure is measured

21、 beforethe chamber is fully evacuated. This step is intended to detectmajor issues (e.g. missing cap, chamber lid not installed,missing part, etc.).3.2.8 intelligent molecular flow sensor (IMFS), nmassflow measurement sensor that is capable of operating in thetransitional and molecular flow regimes

22、measuring mass flow,pressure (vacuum) and temperature (3). The IMFS is indepen-dently calibrated against traceable standards per the require-ments of ISO 17025.3.2.9 large leak check (LLC), npreliminary step in theleak detection process where the mass exiting the chamber ismeasured before the chambe

23、r is fully evacuated. This step isintended to detect leaks large enough to allow the test packageto be evacuated as the vacuum test chamber is evacuated inpreparation for the fine leak test. This step is also intended todetect liquid leakage or spillage early in the process tominimize system drying

24、(moisture removal) requirements.Refer to Section 10 for additional details regarding the dryingprocess. The size of defect that would be detected in this teststep is largely dependent on target fine leak detection level.3.2.10 leak, na hole, void, or defect in the wall or matedcomponents of a packag

25、e capable of passing aerosols (micro-organisms or inert), liquid, or vapor from one side of the wallto the other. These can be passed under action of pressureand/or concentration differential across the wall and is inde-pendent of quantity of fluid flowing. Real life leaks are randomand typically ir

26、regular shaped with given throat area (smallestcross section area) and length.3.2.11 leak artifact, na test package that includes amanufactured defect. For this method, leak artifacts are pack-ages that include a glass micropipette to simulate a packageleak with a similar cross sectional area as rea

27、l life leaks. Theglass micropipette is encapsulated inside a syringe needle andinserted into the needle so its tip is near the needle sharp pointas shown in Fig. 1. The metal needle provides mechanicalprotection to the fragile micropipette. Leak artifact flow rateswere verified using airflow NIST tr

28、aceable standards in com-pliance with the requirements of ISO 17025 to assure theirintegrity and size.3.2.12 leak test signature, nflow curve that displays theflow rate for the test package through the test cycle.3.2.13 mass extraction instrument, ncomplete instrumentwith automated test circuit, IMF

29、S sensor, and controls tocomplete mass extraction testing (3).3.2.14 negative control, nintact (known good) test pack-age.3.2.15 rigid packages, ntest packages that maintain theirshape with very minimal deflection under vacuum.3.2.16 semi-rigid packages, ntest packages that deformunder vacuum but re

30、turn to original shape once vacuum isremoved.3.2.17 verification orifice, ncalibrated leak device builtinto the mass extraction instrument includes a small calibratedleak used for periodic test system challenges.3.2.18 water for injection (WFI), nwater purified bydistillation or a purification proce

31、ss that is equivalent orsuperior to distillation in the removal of chemicals andmicroorganisms.4. Summary of Test Method4.1 The test package is placed inside a vacuum test chamberand the vacuum test chamber evacuated. The test systemincludes a vacuum reservoir, IMFS, and vacuum test chamber.Fig. 2 i

32、llustrates the mass extraction test concept (3). Once thetest system is evacuated to the appropriate level, the system isisolated from the vacuum source. Mass extracted from the testpackage into the vacuum test chamber through any leakspresent in the package will flow to the vacuum reservoir. TheIMF

33、S measures mass flowing from the vacuum test chamberinto the vacuum reservoir. The mass flow is proportional to theFIG. 1 Micropipette Epoxied Inside Protective NeedleF3287 1712defect geometry at the given differential pressure. The mea-sured gas flow results from leaks from the headspace volume orl

34、iquid (e,g, water) leaks exposed to the vacuum inside thechamber. Since the vacuum pressure is lower than the boilingpoint of water at 20 6 5 C, the liquid will boil resulting inliquid vapor and air gas flow mixture.4.2 Test system sensitivity is dependent on IMFS full scalerange, vacuum test chambe

35、r design, package material type, andtest system set-up parameters. Test system set-up parameterscan vary significantly based on required sensitivity, test pack-age material type, test package volume (size), and amount ofpackage deflection that occurs when vacuum is applied. Ma-terials can release ma

36、ss into the vacuum test chamber due tooutgassing. The effects of outgassing on final mass flow ratecan be minimized by lengthening the evacuation time beforethe final mass flow rate is measured or raising the vacuum levelto a higher absolute pressure. In special cases (e.g. largevolume flexible pack

37、aging or some label materials) test pack-age preparation may be required to minimize package volatiles.In cases where a component can move when vacuum is applied(e.g. Syringe or Cartridge stoppers), it is important to designthe vacuum test chamber to limit movement. Outward move-ment of components d

38、uring the test cycle will change thevolume inside the vacuum test chamber and can cause flow tomove to the reservoir which could simulate a leaking packageor false positive.4.3 Test chamber and test parameters must be designed todetect large holes in packages (holes 70-100m in diameter).This is part

39、icularly significant for dry products where theinternal free volume inside the test package is evacuated. Largeleak detection for liquid filled packages is important tominimize introduction of liquid into the test system. Properchamber design and additional test steps are required prior tothe fine l

40、eak test to detect the larger defects early in theevacuation process.NOTE 1A detailed description of the test steps, along with a sampletest signature, are included in AnnexA1.This additional information helpsto clarify the actions taken prior to fine leak measurements and precau-tions taken in adva

41、nce of fine leak measurement to ensure leaks of all sizesare detected.5. Significance and Use5.1 Leaks in medical, pharmaceutical, or food productpackages can affect product quality and consumer safety. Suchleaks can arise from imperfections in package material orbetween mated components designed to

42、 seal the package.Defects can allow unwanted gas (e.g. oxygen or water vapor),particulates, liquids, or microbiological contaminants into orout of the package. Package defect detection can be a criticalpart of ensuring product quality and consumer safety. Use of aphysical CCI test method for sterile

43、 products can be used toassure the stability of the package sterility property duringtransportation and product shelf life.5.2 Mass extraction is a useful non-destructive test methodfor testing a wide variety of packages. Package shape anddimensions that can be tested using mass extraction areessent

44、ially unlimited, as long as a vacuum test chamber can bedesigned and manufactured to accommodate the package.5.3 This method produces quantitative flow measurementresults that are useful in comparing package sealing properties,different batches of product, material properties, and combina-tions of p

45、rocess parameters.5.4 Applications for mass extraction range from manuallyloaded and operated machines to automatic unattended workcells. This method can be applied for audit testing or 100%in-line testing.NOTE 2Leak test methods that rely on gas or vapor transport, such asmass extraction, are not a

46、ble to detect defects if they become plugged bysolid or nonvolatile matter. Plugging is possible by exposure to environ-mental contaminants. In some cases, the packaged product itself can clogdefects. For example, leak paths may become blocked by suspendedsolids, gelatinous matter or dried-out solut

47、ions. Product clogging propen-sity is a function of the product formulation, defect size and geometry, andmay be linked to product storage and handling conditions as well as thetime allotted to defect exposure. An investigation into the impact ofrepeated test condition exposure on defect plugging is

48、 recommended ifproduct-package units are to be subject to repeated leak testing. Cloggingis a complex phenomenon that is not well characterized or understood.Care must be taken to ensure that any CCI test method based on gas orvapor transport through the leak path is appropriate for the intendedprod

49、uct.6. Apparatus6.1 Mass Extraction Leak Detection ApparatusMass ex-traction apparatus includes a vacuum test chamber connectedto a test instrument that includes an IMFS. The system alsorequires a vacuum reservoir, vacuum generation package(pump, mixing tank, and regulator), and dry gas vent. Fig. 3includes a system photo and Fig. 4 includes a system overviewshowing the main components of a test system.6.2 Vacuum Test ChamberVacuum test chambers typicallyconsist of a chamber base and lid. The chamber base connectsto the mass extraction inst

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1