1、IEEE Std 82-2002(Revision of IEEE Std 82-1994)IEEE Standards82TMIEEE Standard Test Procedure forImpulse Voltage Tests on InsulatedConductorsPublished by The Institute of Electrical and Electronics Engineers, Inc.3 Park Avenue, New York, NY 10016-5997, USA3 March 2003IEEE Power Engineering SocietySpo
2、nsored by theInsulated Conductors CommitteeIEEE StandardsPrint: SH95062PDF: SS95062Recognized as anAmerican National Standard (ANSI)The Institute of Electrical and Electronics Engineers, Inc.3 Park Avenue, New York, NY 10016-5997, USACopyright 2003 by the Institute of Electrical and Electronics Engi
3、neers, Inc.All rights reserved. Published 3 March 2003. Printed in the United States of America.Second Printing: 11 August 2009. Correction to Figure 1.IEEE is a registered trademark in the U.S. Patent (978) 750-8400. Permission to photocopy portions of any individual standard for educationalclassro
4、om use can also be obtained through the Copyright Clearance Center.Note: Attention is called to the possibility that implementation of this standard may require use of subject mat-ter covered by patent rights. By publication of this standard, no position is taken with respect to the existence orvali
5、dity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patentsfor which a license may be required by an IEEE standard or for conducting inquiries into the legal validity orscope of those patents that are brought to its attention.Introduction(This introdu
6、ction is not part of IEEE Std 82-2002, IEEE Standard Test Procedure for Impulse Voltage Tests on InsulatedConductors.)The revision to IEEE Std 82-1994, IEEE Standard Test Procedure for Impulse Voltage Tests on InsulatedConductors, contains many changes which are designed to make the standard clearer
7、 and easier to follow.The revised standard is now completely metric and contains more details particularly on test reports.ParticipantsAt the time this standard was approved, Working Group C14 of the Cable Systems Subcommittee C of theInsulated Conductors Committee of the IEEE Power Engineering Soci
8、ety had the following membership:Vern Buchholz, ChairBill Taylor, Vice ChairThe following members of the balloting committee voted on this standard. Balloters may have voted forapproval, disapproval, or abstention. When the IEEE-SA Standards Board approved this standard on 11 December 2002, it had t
9、he followingmembership:James T. Carlo, ChairJames H. Gurney, Vice ChairJudith Gorman, Secretary*Member EmeritusAlain T. BolligerThomas C. Champion, IIIJohn H. CooperYinsan GauRichard A. HartleinWolfgang B. HaverkampLauri J. HiivalaStanley R. HowellGael R. KennedyFrank J. KrajickHarry E. OrtonJohanne
10、s RickmannDirk RusswurmJohn T. Smith, IIIMark D. WaltonTorben AaboKenneth BowKraig BaderVern BuchholzThomas C. Champion, IIIJack CherryJohn H. CooperTommy CooperGuru Dutt DhingraRandall DotsonRobert GearLuzzi GlennWilliam GoldbachAjit GwalRichard HarpWolfgang B. HaverkampLauri J. HiivalaEdward Horga
11、n, Jr.Dennis JohnsonGael R. KennedyAlbert KongWilliam LarzelereMaurice LinkerGregory LuriKeith MalmedalEric MarsdenJames MedekGary MichelDaleep MohlaShantanu NandiJohannes RickmannJames RuggieriFrank StepniakJohn TeixeiraMilan UzelacGerald VaughnJonathan WoodworthSid BennettH. Stephen BergerClyde R.
12、 CampRichard DeBlasioHarold E. EpsteinJulian Forster*Howard M. FrazierToshio FukudaArnold M. GreenspanRaymond HapemanDonald M. HeirmanRichard H. HulettLowell G. JohnsonJoseph L. Koepfinger*Peter H. LipsNader MehravariDaleep C. MohlaWilliam J. MoylanMalcolm V. ThadenGeoffrey O. ThompsonHoward L. Wolf
13、manDon WrightCopyright 2003 IEEE. All rights reserved. iiiAlso included is the following nonvoting IEEE-SA Standards Board liaison:Alan Cookson, NIST RepresentativeSatish K. Aggarwal, NRC RepresentativeSavoula AmanatidisIEEE Standards Managing Editoriv Copyright 2003 IEEE. All rights reserved.Conten
14、ts1. Overview. 11.1 Scope. 11.2 Purpose. 12. References. 13. Testing equipment. 23.1 Impulse generator . 23.2 Wave shape. 24. Specimen. 34.1 Length . 34.2 Electrode arrangement . 34.3 Sample terminations . 35. Test procedures . 35.1 Test temperature . 35.2 Sample conditioning . 45.3 Basic Impulse In
15、sulation Level (BIL) qualification tests . 45.4 Impulse design test. 65.5 Switching impulse test. 85.6 Test reports . 8Annex A (informative) Bibliography . 9Copyright 2003 IEEE. All rights reserved. vIEEE Standard Test Procedure for Impulse Voltage Tests on Insulated Conductors1. OverviewInsulated c
16、onductors in service are subjected to voltage surges from lightning, switching, and other sources.These surges vary widely in wave shape, magnitude, and frequency of occurrence. Laboratory tests cannotduplicate the wide variety of surges met in service. Standard test procedures, however, make it pos
17、sible tocompare the impulse strength of different insulations measured by different laboratories, at different times.1.1 ScopeThis test procedure applies to both switching impulse and lightning impulse tests on cables or cable systemsincorporating laminated or extruded insulations. The term laminate
18、d cable, as used in this procedure,includes high-pressure pipe cable, low-pressure gas-filled cable, self-contained liquid-filled cable, solid-paper cable, and other taped cable designs. A cable system is a cable with one or more accessories attached.This test procedure is not intended to replace an
19、y existing or future standards covering cable or cable acces-sories, impulse generators, impulse testing, or voltage measurements. It is intended to supplement such stan-dards by indicating specific procedures for a specific type of cable system or cable system component.This test procedure does not
20、 apply to cables or cable systems that utilize gas or gas spacers as the sole insu-lating medium. This test procedure applies to individual cable accessories only when referenced by the spe-cific accessory standard.1.2 PurposeThis test procedure is intended as a guide for impulse testing of insulate
21、d conductors (cables) and cableswith accessories installed (cable systems). It can be used as a design or qualification test for cables or cablesystems.2. ReferencesThis standard shall be used in conjunction with the following standard. When the following standard issuperseded by an approved revisio
22、n, the revision shall apply. Copyright 2003 IEEE. All rights reserved. 1IEEEStd 82-2002 IEEE STANDARD TEST PROCEDURE FORIEEE Std 4TM-1995, IEEE Standard Techniques for High-Voltage Testing.1,23. Testing equipment3.1 Impulse generatorThe impulse generator should have sufficient capacity to deliver th
23、e required wave shape and magnitude tothe test sample within the tolerances set.3.2 Wave shapeA standard 1.2/50 s wave shall be used for lightning impulses. When possible, a standard 250/2500 swave shall be used for switching impulses. These waves are defined fully in IEEE Std 4-1995.3.2.1 Wave shap
24、e measurementA calibrated voltage divider and transient recorder or oscilloscope shall be used to observe and record theimpulse wave shape. The wave shape and magnitude shall be determined according to IEEE Std 4-1995. Thewave shape shall be determined first at reduced voltage with the test sample c
25、onnected to the test circuit.3.2.2 Lightning wave shape toleranceA wave within the following tolerances shall be used for lightning impulses:a) Wave front time: 1.2 0.36 sb) Wave time to half-value: 50 10 sc) Wave peak value: 3% of required magnitudeWhen test circuit constraints or a large capacitan
26、ce of the test sample make it impractical to meet the light-ning impulse wave specifications above, a wave front time of up to 5 s may be used with mutual agreementof the parties involved.3.2.3 Switching wave shape tolerance A wave within the following tolerances shall be used for switching impulses
27、:a) Wave time to peak: 250 50 sb) Wave time to half-value: 2500 1500 sc) Wave peak value: 3% of required magnitudeWhen test circuit constraints make it impractical to meet the switching impulse specifications above, a dif-ferent wave shape may be used with mutual agreement of the parties involved.1T
28、he IEEE standards or products referred to in Clause 2 are trademarks owned by the Institute of Electrical and Electronics Engineers,Incorporated.2IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc. 445 Hoes Lane, P.O. Box 1331, Piscat-away, NJ 08855-1331,
29、 USA (http:/www.standards.ieee.org/).2 Copyright 2003 IEEE. All rights reserved.IEEEIMPULSE VOLTAGE TESTS ON INSULATED CONDUCTORS Std 82-20024. Specimen4.1 LengthA minimum cable length of 9 m between grounded ends of the test terminations, when no other accessoriesare involved or as required by the
30、specific cable standard, shall be provided. When other accessories areincluded in the test circuit, a minimum cable test length of 4.5 m between the ends of accessories, andbetween the accessories and grounded end of the test terminations, shall be provided. When testing accesso-ries only, shorter c
31、able lengths are allowed (see specific accessory standard).4.2 Electrode arrangement4.2.1 Inner electrode The inner electrode consists of the cable conductor, including any conductive shielding.4.2.2 Outer electrodeThe outer grounded electrode depends upon the type of cable and voltage rating.a) Shi
32、elded cables. Shielded cables, including those having external metallic coverings, shall be testedin their final construction, or as agreed upon between user and manufacturer.1) Pressurized cables and cable systems shall be tested at minimum recommended operating pres-sure, and with the design filli
33、ng medium, or as agreed between user and manufacturer.2) Other shielded cables shall be tested in air, at atmospheric pressure.3) Other specifications may require certain extruded cables to be tested in conduit.b) Nonshielded cables. Nonshielded cables (i.e., those having no external metallic or sem
34、iconductingcoverings over the insulation) shall be tested with the active length (test sample length) in conduc-tive water that serves as the outer electrode. As an alternative, the cable may be tested in air after ithas been prepared with semiconducting tape or paint and metal braid or mesh as an o
35、uter electrode.4.3 Sample terminationsIf a cable or joint is being evaluated, end preparations may be test terminals, such as water terminals or resis-tive terminals. If a cable system is being evaluated, the active length shall include at least one of each type ofcommercial termination designated f
36、or use on the cable system.Preparation of test terminations should be conservative but adequate to ensure a test failure in the activelength of the cable or the cable accessory being tested.5. Test procedures5.1 Test temperatureThe temperature of the cable conductor shall be maintained at a constant
37、 value during the test. The tempera-ture of the cable conductor shall be set at the recommended maximum continuous operating temperature (+5C, 0 C) unless otherwise agreed upon. Other specifications may require individual cable system compo-nents to be tested at temperatures other than the maximum continuous operating temperature. Temperaturecontrol by conductor heating is preferred. External heating is allowed only by agreement between the par-ties. DC service application cable systems require conductor heating.Copyright 2003 IEEE. All rights reserved. 3
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1