ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:279.50KB ,
资源ID:372921      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-372921.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(HIVEData Warehousing Analytics on Hadoop.ppt)为本站会员(刘芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

HIVEData Warehousing Analytics on Hadoop.ppt

1、HIVE Data Warehousing & Analytics on Hadoop,Joydeep Sen Sarma, Ashish Thusoo Facebook Data Team,Why Another Data Warehousing System?,Problem: Data, data and more data 200GB per day in March 2008 back to 1TB compressed per day today The Hadoop Experiment Problem: Map/Reduce is great but every one is

2、not a Map/Reduce expert I know SQL and I am a python and php expert So what do we do: HIVE,What is HIVE?,A system for querying and managing structured data built on top of Map/Reduce and Hadoop We had: Structured logs with rich data types (structs, lists and maps) A user base wanting to access this

3、data in the language of their choice A lot of traditional SQL workloads on this data (filters, joins and aggregations) Other non SQL workloads,Data Warehousing at Facebook Today,Web Servers,Scribe Servers,Filers,Hive on Hadoop Cluster,Oracle RAC,Federated MySQL,HIVE: Components,HDFS,Hive CLI,DDL,Que

4、ries,Browsing,Map Reduce,MetaStore,Thrift API,SerDe,Thrift,Jute,JSON,Execution,Hive QL,Parser,Planner,Mgmt. Web UI,Data Model,Logical Partitioning,HashPartitioning,Schema,Library,clicks,HDFS,MetaStore,/hive/clicks,/hive/clicks/ds=2008-03-25,/hive/clicks/ds=2008-03-25/0,Tables,#Buckets=32 Bucketing I

5、nfo Partitioning Cols,Dealing with Structured Data,Type system Primitive types Recursively build up using Composition/Maps/Lists Generic (De)Serialization Interface (SerDe) To recursively list schema To recursively access fields within a row object Serialization families implement interface Thrift D

6、DL based SerDe Delimited text based SerDe You can write your own SerDe Schema Evolution,MetaStore,Stores Table/Partition properties: Table schema and SerDe library Table Location on HDFS Logical Partitioning keys and types Other information Thrift API Current clients in Php (Web Interface), Python (

7、old CLI), Java (Query Engine and CLI), Perl (Tests) Metadata can be stored as text files or even in a SQL backend,Hive CLI,DDL: create table/drop table/rename table alter table add column Browsing: show tables describe table cat table Loading Data Queries,Hive Query Language,Philosophy SQL like cons

8、tructs + Hadoop StreamingQuery Operators in initial version Projections Equijoins and Cogroups Group by SamplingOutput of these operators can be: passed to Streaming mappers/reducers can be stored in another Hive Table can be output to HDFS files can be output to local files,Hive Query Language,Pack

9、age these capabilities into a more formal SQL like query language in next version Introduce other important constructs: Ability to stream data thru custom mappers/reducers Multi table inserts Multiple group bys SQL like column expressions and some XPath like expressions Etc,Joins,Joins FROM page_vie

10、w pv JOIN user u ON (pv.userid = u.id) INSERT INTO TABLE pv_users SELECT pv.*, u.gender, u.age WHERE pv.date = 2008-03-03;Outer JoinsFROM page_view pv FULL OUTER JOIN user u ON (pv.userid = u.id) INSERT INTO TABLE pv_users SELECT pv.*, u.gender, u.age WHERE pv.date = 2008-03-03;,Aggregations and Mul

11、ti-Table Inserts,FROM pv_users INSERT INTO TABLE pv_gender_uu SELECT pv_users.gender, count(DISTINCT pv_users.userid) GROUP BY(pv_users.gender) INSERT INTO TABLE pv_ip_uu SELECT pv_users.ip, count(DISTINCT pv_users.id) GROUP BY(pv_users.ip);,Running Custom Map/Reduce Scripts,FROM ( FROM pv_users SEL

12、ECT TRANSFORM(pv_users.userid, pv_users.date) USING map_script AS(dt, uid) CLUSTER BY(dt) map INSERT INTO TABLE pv_users_reduced SELECT TRANSFORM(map.dt, map.uid) USING reduce_script AS (date, count);,Inserts into Files, Tables and Local Files,FROM pv_users INSERT INTO TABLE pv_gender_sum SELECT pv_

13、users.gender, count_distinct(pv_users.userid) GROUP BY(pv_users.gender) INSERT INTO DIRECTORY /user/facebook/tmp/pv_age_sum.dir SELECT pv_users.age, count_distinct(pv_users.userid) GROUP BY(pv_users.age) INSERT INTO LOCAL DIRECTORY /home/me/pv_age_sum.dirFIELDS TERMINATED BY , LINES TERMINATED BY 01

14、3 SELECT pv_users.age, count_distinct(pv_users.userid) GROUP BY(pv_users.age);,Hadoop Usage Facebook,Types of Applications: Summarization Eg: Daily/Weekly aggregations of impression/click counts Ad hoc Analysis Eg: how many group admins broken down by state/country Data Mining (Assembling training d

15、ata) Eg: User Engagement as a function of user attributes,Hadoop Usage Facebook,Usage statistics: Total Users: 140 (about 50% of engineering !) in the last 1 months Hive Data (compressed): 80 TB total, 1TB incoming per day Job statistics: 1000 jobs/day 100 loader jobs/day,Hadoop Improvements Faceboo

16、k,Some problems: No Fair Sharing: Big tasks can hog the cluster No snapshots: What if a software bug corrupts the NameNode transaction log Solutions: Simple fair sharing (Matie Zaharia) Investigating Snapshots (Dhrubha Bortharkur),Conclusion,JIRA http:/issues.apache.org/jira/browse/HADOOP-3601 Soon to be checked into hadoop trunk Release available in hadoop version 0.19 People: Suresh Anthony Zheng Shao Prasad Chakka Pete Wyckoff Namit Jain Raghu Murthy Joydeep Sen Sarma Ashish Thusoo,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1