ImageVerifierCode 换一换
格式:PPT , 页数:39 ,大小:322.50KB ,
资源ID:372936      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-372936.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Introduction to Smoothing Splines.ppt)为本站会员(livefirmly316)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Introduction to Smoothing Splines.ppt

1、Introduction to Smoothing Splines,Tongtong Wu Feb 29, 2004,Outline,Introduction Linear and polynomial regression, and interpolation Roughness penalties Interpolating and Smoothing splines Cubic splines Interpolating splines Smoothing splines Natural cubic splines Choosing the smoothing parameter Ava

2、ilable software,Key Words,roughness penalty penalized sum of squares natural cubic splines,Motivation,Motivation,Motivation,Motivation,Spline(y18),Introduction,Linear and polynomial regression : Global influence Increasing of polynomial degrees happens in discrete steps and can not be controlled con

3、tinuously Interpolation Unsatisfactory as explanations of the given data,Roughness penalty approach,A method for relaxing the model assumptions in classical linear regression along lines a little different from polynomial regression.,Roughness penalty approach,Aims of curving fitting A good fit to t

4、he data To obtain a curve estimate that does not display too much rapid fluctuation Basic idea: making a necessary compromise between the two rather different aims in curve estimation,Roughness penalty approach,Quantifying the roughness of a curve An intuitive way:(g: a twice-differentiable curve) M

5、otivation from a formalization of a mechanical device: if a thin piece of flexible wood, called a spline, is bent to the shape of the graph g, then the leading term in the strain energy is proportional to,Roughness penalty approach,Penalized sum of squaresg: any twice-differentiable function on a,b

6、: smoothing parameter (rate of exchange between residual error and local variation) Penalized least squares estimator,Roughness penalty approach,Curve for a large value of,Roughness penalty approach,Curve for a small value of,Interpolating and Smoothing Splines,Cubic splines Interpolating splines Sm

7、oothing splines Choosing the smoothing parameter,Cubic Splines,Given at1t2tnb, a function g is a cubic spline if On each interval (a,t1), (t1,t2), , (tn,b), g is a cubic polynomial The polynomial pieces fit together at points ti (called knots) s.t. g itself and its first and second derivatives are c

8、ontinuous at each ti, and hence on the whole a,b,Cubic Splines,How to specify a cubic splineNatural cubic spline (NCS) if its second and third derivatives are zero at a and b, which implies d0=c0=dn=cn=0, so that g is linear on the two extreme intervals a,t1 and tn,b.,Natural Cubic Splines,Value-sec

9、ond derivative representation We can specify a NCS by giving its value and second derivative at each knot ti. Definewhich specify the curve g completely. However, not all possible vectors represent a natural spline!,Natural Cubic Splines,Value-second derivative representation Theorem 2.1The vector a

10、nd specify a natural spline g if and only if Then the roughness penalty will satisfy,Natural Cubic Splines,Value-second derivative representation,Natural Cubic Splines,Value-second derivative representation R is strictly diagonal dominant, i.e. R is positive definite, so we can define,Interpolating

11、Splines,To find a smooth curve that interpolate (ti,zi), i.e. g(ti)=zi for all i. Theorem 2.2Suppose and t1tn. Given any values z1,zn, there is a unique natural cubic spline g with knots ti satisfying,Interpolating Splines,The natural cubic spline interpolant is the unique minimizer of over S2a,b th

12、at interpolate the data. Theorem 2.3Suppose g is the interpolant natural cubic spline, then,Smoothing Splines,Penalized sum of squaresg: any twice-differentiable function on a,b : smoothing parameter (rate of exchange between residual error and local variation) Penalized least squares estimator,Smoo

13、thing Splines,1. The curve estimator is necessarily a natural cubic spline with knots at ti, for i=1,n. Proof: suppose g is the NCS,Smoothing Splines,2. Existence and uniqueness Let then since be precisely the vector of . Express ,Smoothing Splines,2. Theorem 2.4Let be the natural cubic spline with

14、knots at ti for which . Then for any in S2a,b,Smoothing Splines,3. The Reinsch algorithmThe matrix has bandwidth 5 and is symmetric and strictly positive-definite, therefore it has a Cholesky decomposition,Smoothing Splines,3. The Reinsch algorithm for spline smoothingStep 1: Evaluate the vector .St

15、ep 2: Find the non-zero diagonals of and hence the Cholesky decomposition factors L and D. Step 3: Solve for by forward and back substitution.Step 4: Find g by .,Smoothing Splines,4. Some concluding remarks Minimizing curve essentially does not depend on a and b, as long as all the data points lie b

16、etween a and b. If n=2, for any , setting to be the straight line through the two points (t1,Y1) and (t2,Y2) will reduce S(g) to zero. If n=1, the minimizer is no longer unique, since any straight line through (t1,Y1) will yield a zero value S(g).,Choosing the Smoothing Parameter,Two different philo

17、sophical approaches Subjective choice Automatic method chosen by data Cross-validation Generalized cross-validation,Choosing the Smoothing Parameter,Cross-validationGeneralized cross-validation,Available Software,smooth.spline in R Description:Fits a cubic smoothing spline to the supplied data. Usag

18、e: plot(speed, dist) cars.spl - smooth.spline(speed, dist) cars.spl2 - smooth.spline(speed, dist, df=10) lines(cars.spl, col = “blue“) lines(cars.spl2, lty=2, col = “red“),Available Software,Example 1library(modreg)y18 - c(1:3,5,4,7:3,2*(2:5),rep(10,4)xx - seq(1,length(y18), len=201)(s2 - smooth.spl

19、ine(y18) # GCV(s02 - smooth.spline(y18, spar = 0.2)plot(y18, main=deparse(s2$call), col.main=2) lines(s2, col = “blue“); lines(s02, col = “orange“); lines(predict(s2, xx), col = 2)lines(predict(s02, xx), col = 3); mtext(deparse(s02$call), col = 3),Available Software,Example 1,Available Software,Exam

20、ple 2data(cars) # N=50, n (# of distinct x) =19attach(cars)plot(speed, dist, main = “data(cars) & smoothing splines“)cars.spl df =“,round(cars.spl$df,1), “s( * , df = 10)“), col = c(“blue“,“red“), lty = 1:2, bg=bisque)detach(),Available Software,Example 2,Extensions of Roughness penalty approach,Sem

21、iparametric modeling: a simple application to multiple regressionGeneralized linear models (GLM) To allow all the explanatory variables to be nonlinearAdditive model approach,Reference,P.J. Green and B.W. Silverman (1994) Nonparametric Regression and Generalized Linear Models. London: Chapman & Hall,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1