ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:527KB ,
资源ID:372965      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-372965.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Lecture 3 Classic LP Examples.ppt)为本站会员(ideacase155)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Lecture 3 Classic LP Examples.ppt

1、Lecture 3 Classic LP Examples,Topics Employee scheduling problem Energy distribution problem Feed mix problem Cutting stock problem Regression analysis Model Transformations,Macrosoft has a 24-hour-a-day, 7-days-a-week toll free hotline that is being set up to answer questions regarding a new produc

2、t. The following table summarizes the number of full-time equivalent employees (FTEs) that must be on duty in each time block.,Interval,Time,FTEs,1,0-4,15,2,4-8,10,3,8-12,40,4,12-16,70,5,16-20,40,6,20-0,35,Employee Scheduling,Macrosoft may hire both full-time and part-time employees. The former work

3、 8-hour shifts and the latter work 4-hour shifts; their respective hourly wages are $15.20 and $12.95. Employees may start work only at the beginning of 1 of the 6 intervals. Part-time employees can only answer 5 calls in the time a full-time employee can answer 6 calls. (i.e., a part-time employee

4、is only 5/6 of a full-time employee.) At least two-thirds of the employees working at any one time must be full-time employees.,Formulate an LP to determine how to staff the hotline at minimum cost.,Constraints for Employee Scheduling,Decision Variables,xt = # of full-time employees that begin the d

5、ay at the start of interval t and work for 8 hours yt = # of part-time employees that are assigned interval t,x1 + x6,2,3,2,3,.,.,.,2,3,xt 0, yt 0 t =1,2,6,At least 2/3 workers must be full time,More constraints:,Nonnegativity,(x6 + x1 + y1),x1 + x2,(x1 + x2 + y2),(x5 + x6 + y6),x5 + x6,An agricultu

6、ral mill produces a different feed for cattle, sheep, and chickens by mixing the following raw ingredients: corn, limestone, soybeans, and fish meal.These ingredients contain the following nutrients: vitamins, protein, calcium, and crude fat in the following quantities:,Ingredient, i,Vitamins,Protei

7、n,Calcium,Crude Fat,Corn,8,10,6,8,Limestone,6,5,10,6,Soybeans,10,12,6,6,Fish Meal,4,18,6,9,Let aik = quantity of nutrient k per kg of ingredient i,Nutrient, k,Feed Mix Problem,The mill has (firm) contracts for the following demands.,Demand (kg),Cattle,Sheep,Chicken,10,000,6,000,8,000,There are limit

8、ed availabilities of the raw ingredients.,Supply (kg),Corn,Limestone,Soybeans,Fish Meal,6,000,10,000,4,0,00,5,000,The different feeds have “quality” bounds per kilogram.,Vitamins,Protein,Calcium,Crude fat,min max,min max,min max,min max,Cattle,6 -,6 -,7 -,4 8,Sheep,6 -,6 -,6 -,4 8,Chicken,4 6,6 -,6

9、-,4 8,si,dj,The above values represent bounds: ljk and ujk,Constraints,Cost per kg of the raw ingredients is as follows:,Corn,Limestone,Soybeans,Fish meal,cost/kg, ci,20,12,24,12,Formulate problem as a linear program whose solution yields desired feed production levels at minimum cost.,Indices/sets,

10、i I,ingredients corn, limestone, soybeans, fish meal ,j J,products cattle, sheep, chicken feeds ,k K,nutrients vitamins, protein, calcium, crude fat ,Costs and Notation,Data,dj,demand for product j (kg),si,supply of ingredient i (kg),ljk,lower bound on number of nutrients of type k per kg of product

11、 j,upper bound on number of nutrients of type k per kg of product j,cost per kg of ingredient i,aik,number of nutrients k per kg of ingredient i,Decision Variables,xij,amount (kg) of ingredient i used in producing product j,ujk,ci,min,cixij,s.t.,xij 0,xij = dj,xij si,“ j J,iI,jJ,iI,“ i I,jJ,“ i I, j

12、 J,LP Formulation of Feed Mix Problem,Raw Materials,Qualities,Blended commodities,corn, limestone,soybeans, fish meal,protein, vitamins,calcium, crude fat,feed,butane, catalytic,reformate,heavy naphtha,octane, volatility,vapor pressure,gasoline,pig iron,ferro-silicon,carbide, various,alloys,carbon,m

13、anganese,chrome content,metals,2 raw ingredients,1 quality,1 commodity,Generalization of feed Mix Problem Gives Blending Problems,Three special orders for rolls of paper have been placed at a paper mill. The orders are to be cut from standard rolls of 10 and 20 widths.,Order,Width,Length,1,5,10,000,

14、2,7,30,000,3,9,20,000,Assumption: Lengthwise strips can be taped togetherGoal: Throw away as little as possible,Trim-Loss or Cutting Stock problem,Problem: What is trim-loss?,Decision variables: xj = length of roll cut using pattern, j = 1, 2, ?,7,10,9,5,5,20,5000,10,roll,20,roll,x1,5,2,0,0,4,2,2,1,

15、0,0,7,0,1,0,0,1,0,2,1,0,9,0,0,1,0,0,1,0,1,2,Trim loss,0,3,1,0,3,1,1,4,2,x2,x3,x4,x5,x6,x7,x8,x9,Patterns Possible,Minimize Trim Loss + Overproduction,min,z =,3x2,+,x3,+,3x5,+ x6,+ x7,+,4x8,+ 5y1 + 7y2 + 9y3,s.t.,2x1,+,4,x4,+,2x5,+ 2x6,+ x7 y1,=,10,000,x2,+,x5,+,2x7,+ x8, y2,=,30,000,x3,+,x6,+,x8,+ 2

16、x9, y3,=,20,000,xj 0, j = 1,9; yi 0, i = 1, 2, 3,where yi is overproduction of width i,+ 2x9,Alternative Formulation,Minimizing Piecewise Linear Convex Functions,Definition of convexity Examples of objective functions1. f (x) = maxk=1,p (ckx + dk)2. f (x) = j=1,n cj|xj|, cj 0 for all j3. f (x) = sep

17、arable, piecewise linear, convex,Definition of a Convex/Concave Function,A function f : n is called convex if for every x and y n, and every 0,1, we have f (x + (1 )y) f (x) + (1 )f (y)A function f : n is called concave if for every x and y n, and every 0,1, we have f (x + (1 )y) f (x) + (1 )f (y)If

18、 f (x) is convex, then f (x) is concave,Minimizing the Maximum of Several Affine Functions,Problem: min maxk=1,p (ckx + dk)s.t. Ax bTransformed problem:min zs.t. z ckx + dk, k = 1,pAx b,x,f(x) = max,Problems Involving Absolute Values: Minimizing the L1-Norm,Problem: min j=1,n cj|xj|, cj 0 for all js

19、.t. Ax b,Data Fitting Example,Problem: We are given p data points of the form (ak, bk), k = 1,p, where ak n and bk , and wish to build a model that predicts the value of the variable b from knowledge of the vector a. Assume a linear model: b = ax + x0, where (x, x0) is a parameter vector to be deter

20、mined. Error: Given a particular values of (x, x0), the residual (predictive error) at the k th data point is defined by |akx + x0 bk|. Objective: Find values of (x, x0) that best explain the available data; i.e., minimize the error.,Data Fitting Example (contd),Model 1: Minimize the largest residua

21、l min maxk |akx + x0 bk|Transformed model 1: min zs.t. z akx + x0 bk , k = 1,pz akx x0 + bk , k = 1,pModel 2: Minimize the sum of residuals min k=1,p |akx + x0 bk| Transformed model 2: min k=1,p zks.t. zk akx + x0 bk , k = 1,pzk akx x0 + bk , k = 1,p,Data (a,b) = (1,2) , (3,4) , (4,7) ,We want to “f

22、it” a linear function b = ax + x0 to these data points; i.e., we have to choose optimal values for x and x0.,7,6,5,4,3,2,1,1 2 3 4 5,b,a,Constrained Regression,Objective: Find parameters x and x0 that minimize the maximum absolute deviation between the data ak and the fitted line bk = akx + x0.,bk,a

23、nd,bk,In addition, were going to impose a priori knowledge that the,slope of the line must be positive. (We dont know about the intercept.),Decision variables,x = slope of line,known to be positive,x0 = b-intercept,positive or negative,observed value,Predicted value,Let z = max |bk - bk| : k = 1, 2,

24、 3 ,Optimization model:,min z,where bk = akx + x0,Objective function:,s.t. z |bk - bk|, k = 1, 2, 3,min max |bk - bk| : k = 1, 2, 3 ,Nonlinear constraints:,b1,-,b1,=, 1x + x0 2 ,b2,-,b2,=, 3x + x0 4 ,b3,-,b3,=, 4x + x0 7 ,z ,z ,z ,Letting x0 = x0+ - x0-, x0+ 0, x0- 0, we finally get ,min z,s.t.,x +

25、x0+ - x0- - z,x, x0+, x0-, z 0, x x0+ x0- - z,3x + x0+ - x0- - z,- 3x - x0+ x0- - z,4x + x0+ - x0- - z,- 4x - x0+ x0- - z,Separable Piecewise Linear Functions,Model: min f (x) = f1(x1) + f2(x2) + . . . + fp(xp) For each xj we are given r break points: 0 aj1 aj2 . . . ajr Let cjt be the slope in the

26、interval aj,t-1 xj ajt for t =1,r+1, where aj0= 0 and aj,r+1 = Let yjt be the portion of xj lying in the tth interval, t = 1,r+1,xj,aj1,aj2,ajr,fj(xj),aj,r-1,0,Transformation for fj(xj),Let xj = yj1 + yj2 + . . . + yj,r+1 Model:min cj1yj1 + cj2yj2 + . . . + cj,r+1 yj,r+1 + f1(x1) + . . .s.t. 0 yj1 a

27、j10 yj2 aj2 aj1. . .0 yjr ajr aj,r-10 yj,r+1and for every t, if yjt 0, then each yjk is equal to its upper bound ajk aj,k-1, for all k t.,Austin Municipal Power and Light (AMPL) would like to determine optimal operating levels for their electric generators and associated distribution patterns that w

28、ill satisfy customer demand. Consider the following prototype system,Plants,The two plants (generators) have the following (nonlinear) efficiencies:,Plant 1, 0, 6 MW, 6MW, 10MW,Unit cost ($/MW),$10,$25,Plant 2, 0, 5 MW,5MW, 11MW,Unit cost ($/MW),$8,$28,For plant 1, e.g., if you generate at a rate of

29、 8MW (per sec), then the cost ($) is = ($10/MW)(6MW) + ($25/MW)(2MW) = $110.,2,1,3,2,1,Demand sectors,Demand requirements,4 MW,7 MW,6 MW,Energy Generation Problem (with piecewise linear objective),Formulate an LP that, when solved, will yield optimal power generation and distribution levels.,Decisio

30、n Variables,= power generated at plant,1 at operating level 1,1,2,x21,2,1,x22,2,2,= power sent from plant,1 to demand sector 1,1 ,2,1,3,2,1,2,2,2,3,Problem Statement and Notation,w11,w12,w13,w21,w22,w23,x11,x12,Formulation,min,10x11 + 25x12 + 8x21 + 28x22,s.t.,w,11,+,w,12,+,w,13,w,21,+,w,22,+,w,23,w

31、,11,+,w,21,= 4,w,12,+,w,22,= 7,w,13,+,w,23,= 6,0 x11 6, 0 x12 4 0 x21 5, 0 x22 6 w11, w12, w13, w21, w22, w32 0,Note that we can model the nonlinear operating costs as an LP only because the efficiencies have the right kind of structure. In particular, the plant is less efficient (more costly) at hi

32、gher operating levels. Thus the LP solution will automatically select level 1 first.,= x11 + x12,= x21 + x22,Flow balance,Demand,The above formulation can be generalized for any number of plants, demand sectors, and generation levels.,Indices/Sets,i I,plants,demand sectors,generation levels,Data,Cik

33、 = unit generation cost ($/MW) for plant i at level k,uik = upper bound (MW) for plant i at level k,dj = demand (MW) in sector j,Decision Variables,xik = power (MW) generated at plant i at level k,wij = power (MW) sent from plant i to sector j,j J,k K,General Formulation of Power Distribution Proble

34、m,min,s.t.,wij,=,cikxik,xik, xik uik “ i I, k K0 wij “ i I, j J,wij = dj,kK,iI,kK,jJ,“ i I,“ j J,iI,General Network Formulation,Model Transformations,Direction of optimization:Minimize c1x1 + c2x2 + + cnxn Maximize c1x1 c2x2 cnxn,Unrestricted variables: xj = y1j y2j where y1j 0, y2j 0,Constant term

35、in objective function ignore,Nonzero lower bounds on variables: xj lj replace with xj = yj + lj where yj 0,Nonpositive variable: xj 0 replace with xj = yj where yj 0,What You Should Know About LP Problems,How to formulate various types of problems. Difference between continuous and integer variables. How to find solutions. How to transform variables and functions into the standard form.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1