ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:603KB ,
资源ID:373014      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-373014.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Monitoring Streams -- A New Class of Data Management .ppt)为本站会员(dealItalian200)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Monitoring Streams -- A New Class of Data Management .ppt

1、Monitoring Streams - A New Class of Data Management Applications,Don Carney Brown UniversityUur etintemel Brown UniversityMitch Cherniack Brandeis UniversityChristian Convey Brown UniversitySangdon Lee Brown UniversityGreg Seidman Brown UniversityMichael Stonebraker MITNesime Tatbul Brown University

2、Stan Zdonik Brown University,Background,MIT/Brown/Brandeis team First Aurora, then Borealis Practical system Designed for Scalablility: 106 stream inputs, queries QoS-Driven Resource Management Stream Storage Management Realiability/ Fault Tolerance Distribution and AdaptivityFirst stream startup: S

3、treamBase Financial applications,Example Stream Applications,Market Analysis Streams of Stock Exchange Data Critical Care Streams of Vital Sign Measurements Physical Plant Monitoring Streams of Environmental Readings Biological Population Tracking Streams of Positions from Individuals of a Species,N

4、ot Your Average DBMS,External, Autonomous Data Sources Querying Time-Series Triggers-in-the-large Real-time response requirements Noisy Data, Approximate Query Results,Outline,2. Aurora Overview/ Query Model Runtime Operation Adaptivity,Aurora from 100,000 Feet,Query,. . .,. . .,Query,. . .,Query,.

5、. .,. . .,. . .,. . .,Aurora from 100 Feet,. . .,. . .,. . .,. . .,. . .,Queries = Workflow (Boxes and Arcs) Workflow Diagram = “Aurora Network” Boxes = Query Operators Arcs = Streams,s,s,m,s,m,s,Slide,Tumble,m,s,Streams (Arcs) stream: tuple sequence from common source (e.g., sensor) tuples timestam

6、ped on arrival (Internal use: QoS),Query Operators (Boxes) Simple: FILTER, MAP, RESTREAM Binary: UNION, JOIN, RESAMPLE Windowed: TUMBLE, SLIDE, XSECTION, WSORT,Aurora in Action,. . .,. . .,. . .,. . .,. . .,s,s,m,s,m,s,Slide,Tumble,m,s,s,s,s,s,s,s,m,m,s,s,s,s,s,s,s,s,m,m,s,s,s,s,m,m,App,Tumble,Tumbl

7、e,App,“Box-at-a-time” Scheduling,Arcs Tuple Queues,Outputs Monitored for QoS,Continuous and Historical Queries,Connection Point,1 Hour,Quality-of-Service (QoS),Output Value,Specifies “Utility” Of Imperfect Query Results Delay-Based (specify utility of late results) Delivery-Based, Value-Based (speci

8、fy utility of partial results)QoS InfluencesScheduling, Storage Management, Load Shedding,% Tuples Delivered,B,Delay,A,C,Talk Outline,Introduction 2. Aurora Overview 3. Runtime Operation 4. Adaptivity 5. Related Work and Conclusions,Runtime Operation Basic Architecture,Scheduler,QOS Monitor,Box Proc

9、essors,Router,Runtime Operation Scheduling: Maximize Overall QoS,Choice 1:,A: Cost: 1 sec,(, age: 1 sec),B: Cost: 2 sec,(, age: 3 sec),Delay = 2 sec Utility = 0.5,Delay = 5 sec Utility = 0.8,Schedule Box A now rather than later Ideal: Maximize Overall Utility Presently exploring scalable heuristics

10、(e.g., feedback-based),Choice 2:,Runtime Operation Scheduling: Minimizing Per Tuple Processing Overhead,Train Scheduling:,A,B,A (x),A (y),A (z),B (A (x),B (A (y),B (A (z),Default Operation: = Context Switch,Run-time Queue Management Prefetch Queues Prior to Being Scheduled Drop Tuples from Queues to

11、 Improve QoS2. Connection Point ManagementSupport Efficient (Pull-Based) Access to Historical DataE.g., indexing, sorting, clustering, ,Runtime Operation Storage Management,Talk Outline,Introduction 2. Aurora Overview 3. Runtime Operation 4. Adaptivity 5. Related Work and Conclusions,Stream Query Op

12、timization,Differences with Traditional Query Optimization?,Stream Query Optimization,New classes of operators (windows) may mean new rewrites New execution modes (continuous/pipelining) More dynamic fluctuations in statistics compile time optimization not possible Global optimization not practical;

13、 as huge query networks Adaptive optimization. Other cost models taking memory into account, not throughput but output rate, etc. Query optimization and load shedding,Query Optimization,Compile-time, Global Optimization InfeasibleToo Many BoxesToo Much Volatility in Network, Data,Dynamic, Local Opti

14、mizationThreshold re when to optimize,Motivation of Query Migration,Continuous query over streams Statistics unknown before start Statistics changing during execution Stream rates, arrival pattern, distribution, etcNeed for dynamic adaptation Plan re-optimization Change the shape of query plan tree,

15、Run-time Plan Re-Optimization,Step 1 - Decide when to optimize Statistics Monitoring Step 2 Generate new query plan Query Optimization Step 3 Replace current plan by new plan Plan Migration,Adaptivity in Query Optimization,Dynamic Optimization : Migration,3. Drain Subnetwork,4. Optimize Subnetwork,5

16、. Turn on Taps,1. Identify Subnetwork,2. Buffer Inputs,Nave Plan Migration Strategy,Migration Steps Pause execution of old plan Drain out all tuples inside old plan Replace old plan by new plan Resume execution of new plan,AB,BC,A,B,C,AB,BC,A,B,C,Problem: Works for stateless operators only,Stateful

17、Operator in CQ,Why stateful Need non-blocking operators in CQ Operator needs to output partial results State data structure keep received tuples,AB,A,B,b1,b2,b3,b4,b5,ax,State A,State B,ax,ax,b2,ax,b3,Key Observation: The purge of tuples in states relies on processing of new tuples.,Example: Symmetr

18、ic NL join w/ window constraints,Nave Migration Strategy Revisited,Steps (1) Pause execution of old plan (2) Drain out all tuples inside old plan (3) Replace old plan by new plan (4) Resume execution of new plan,AB,BC,A,B,C,(2) All tuples drained,(4) Processing Resumed,(3) Old Replaced By new,Deadlo

19、ck Waiting Problem:,Adaptivity Query Optimization,State Movement Protocol Parallel Track Protocol,Moving State Strategy,Basic idea Share common states between two migration boxes Key steps State Matching Match states based on IDs. State Moving Create new pointers for matched states in new box Whats

20、left? Unmatched states in new box,CD,SABC,SD,BC,SAB,SC,AB,SA,SB,AB,SA,SBCD,CD,SBC,SD,BC,SB,SC,QA,QB,QC,QD,QA,QB,QC,QD,QABCD,QABCD,Old Box,New Box,Parallel Track Strategy,Basic idea Execute both plans in parallel and gradually “push” old tuples out of old box by purging Key steps Connect boxes Execut

21、e in parallel Until old box “expired” (no old tuple or sub-tuple) Disconnect old box Start execute new box only,CD,SABC,SD,BC,SAB,SC,AB,SA,SB,AB,SA,SBCD,CD,SBC,SD,BC,SB,SC,QA,QB,QC,QD,QA,QB,QC,QD,QABCD,QABCD,1. Two Load Shedding Techniques: Random Tuple DropsAdd DROP box to network (DROP a special c

22、ase of FILTER) Position to affect queries w/ tolerant delivery-based QoS reqtsSemantic Load SheddingFILTER values with low utility (acc to value-based QoS)2. Triggered by QoS Monitore.g., after Latency Analysis reveals certain applications are continuously receiving poor QoS,Adaptivity Load Shedding

23、,Adaptivity Detecting Overload,Throughput Analysis,Cost = c Selectivity = s,Input rate = r,1/c r Problem,Latency Analysis,Implementation GUI,Implementation Runtime,Conclusions,Aurora Stream Query Processing SystemDesigned for Scalability QoS-Driven Resource Management Continuous and Historical Queries Stream Storage Management Implemented PrototypeWeb site: www.cs.brown.edu/research/aurora/,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1