ImageVerifierCode 换一换
格式:PPT , 页数:42 ,大小:1.34MB ,
资源ID:373261      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-373261.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(The eXplicit MultiThreading (XMT) Easy-To-Program Parallel .ppt)为本站会员(dealItalian200)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

The eXplicit MultiThreading (XMT) Easy-To-Program Parallel .ppt

1、The eXplicit MultiThreading (XMT) Easy-To-Program Parallel Computer: A PRAM-On-Chip Proof-of-Concept,Uzi Vishkin (Lack of) ease-of-programming failed all parallel computers to date Vendors are yet to offer easy-to-program (& scalable) many-cores PRAM “sets the programmer free”. Unique also in other

2、ways 4. Contender for era of general-purpose many-cores: PRAM-On-Chip “XMT” (add-on ?) + 2010s GPU replace old Pentium+GPU XMT home page: www.umiacs.umd.edu/users/vishkin/XMT,Commodity computer systems,19462003 General-purpose computing: Serial. 5KHz4GHz. 2004 Clock frequency growth: flat. If you wa

3、nt your program to run significantly faster youre going to have to parallelize it Parallelism: only game in town #Transistors/chip 19802011: 29K30B! General-purpose computing goes parallel. #”cores”: dy-2003 But, what about the programmer? Systems communities claim to be objectively guided by “the q

4、uantitative approach”. Yet, they “forget” to quantify or benchmark the human factor. E.g., to whom can an approach be taught: graduate or middle-school students? Development time?40 years of parallel computing Never a successful general-purpose parallel computer: Easy to program & good speedups Lett

5、er grade from NSF Blue-Ribbon Panel on Cyberinfrastructure: F. To many users programming existing parallel computers is “as intimidating and time consuming as programming in assembly language”. What would be todays grade? If higher, is this a game changer?Are theorists the canaries in the coal mine?

6、 Low numbers a worrying sign?,Intel Platform 2015, March05,2 Paradigm Shifts,Serial to parallel widely agreed. Within parallel Existing “decomposition-first” paradigm. Too painful to program. Hence: Express only “what can be done in parallel” (PRAM: Parallel Random-Access Model). Build machine aroun

7、d this. Serial doctrine Natural (parallel) algorithmtime = work “work” = total #ops time work Late 1970s- : THEORY: figure out how to think algorithmically in parallel 1997- : PRAM-On-ChipUMD: derive specs for architecture; design and build 2 premises: (i) parallel algorithmic thinking. (ii) Specs f

8、irst; contrast with: J. Hennessy: “Many of the early ideas were motivated by observations of what was easy to implement in the hardware rather than what was easy to use”. Implies: parallel HW followed ”build-first figure-out-how-to-program-later”.,What could I do in parallel at each step assuming un

9、limited hardware ,# ops,. .,. .,. .,#ops,time,time,Pre many-core parallelism: 3 main trusts,Improving single-task completion time for general-purpose parallelism was not the primary target of parallel machines: 1. Application-specific: e.g., computer graphics. Limiting origin. GPUs: great performanc

10、e if you figure out how. Example: limited interaction between threads; what to do with textbook parallel graph algorithms? 2. Parallel machines for high-throughput (of serial programs); hence, cache coherence, SMP, DSM. Only choice for “HPC”Language standards, but many issues, e.g., F grade. Heard f

11、rom HW designers (that dominate vendors): YOU figure out how to program (their machines) for locality. Nothing fundamentally new in HW since 1990s. Serious lack of parallel machine diversity. What can a non-HW designers do?! HW for CS is like nature for Physics (Are vendors Gods of CS?) Theory Alway

12、s had its eyes on the ball. Started with a clean slate targeting single task completion time for general-purpose parallel computing. 3. PRAM and its extensive algorithmic theory. As simple as it gets. Ahead of its time: avant-garde. 1990s Common wisdom (LOGP): never implementable. Well: we built it

13、Showed 100x speedups for 1000 processors. Also: taught to grad students, seniors, freshmen, HS (&MS). humans to humans. Validated understanding & performance with programming assignments. Problems on par with serial courses. Students see immediate speedups.,Welcome to the 2009 Impasse,All vendors co

14、mmitted to multi-cores. Yet, their architecture and how to program them for single program completion time not clear The software spiral (HW improvements SW imp HW imp) growth engine for IT (A. Grove, Intel); Alas, now broken! SW vendors avoid investment in long-term SW development since may bet on

15、the wrong horse. Impasse bad for business. For current students: Does CS&E degree mean: being trained for a 50yr career dominated by parallelism by programming yesterdays serial computers? How can the same impasse & need to serve current students be mitigated for education? Answer “What can be done

16、next in parallel” common cognition for all approachesCan teach PRAM common denominator. The education enterprise has an actionable agenda for a time critical need. Comments: 1. Is this a tie-breaker among approaches? 2. A machine is not easy-to-program if it is not easy-to-teach education for parall

17、elism has become a key benchmark. Namely, for parallelism, education is CS research.,Need,A general-purpose parallel computer framework “successor to the Pentium for the multi-core era” that: is easy to program; gives good performance with any amount (grain or regularity) of parallelism provided by

18、the algorithm; namely, up- and down-scalability including backwards compatibility on serial code; supports application programming (VHDL/Verilog, OpenGL, MATLAB) and performance programming; and fits current chip technology and scales with it. (in particular: strong speed-ups for single-task complet

19、ion time)Key point: PRAM-On-ChipUMD is addressing (i)-(iv).,The PRAM Rollercoaster ride,Late 1970s Theory work began UP Won the battle of ideas on parallel algorithmic thinking. No silver or bronze! Model of choice in all theory/algorithms communities. 1988-90: Big chapters in standard algorithms te

20、xtbooks. DOWN FCRC93: “PRAM is not feasible”. 93+ despair no good alternative! Where vendors expect good enough alternatives to come from in 2009?. Device changed it all with #transistors on-chip: UP Highlights: eXplicit-multi-threaded (XMT) FPGA-prototype computer (not simulator): SPAA07,CF08; 90nm

21、 ASIC tape-outs: int. network, HotI07, XMT. 1000 processors can fit on a single chip by mid-2010s. But, how come? Crash “course” on parallel computing How much processors-to-memories bandwidth? Enough: Ideal Programming Model (PRAM) Limited: Programming difficulties,Hardware prototypes of PRAM-On-Ch

22、ip,The design scales to 1000+ cores on-chip,64-core, 75MHz FPGA prototype SPAA07, Computing Frontiers08 Original explicit multi-threaded (XMT) architecture SPAA98 (Cray started to use “XMT” 7 years later),Interconnection Network for 128-core. 9mmX5mm, IBM90nm process. 400 MHz prototype HotInterconne

23、cts07,Same design as 64-core FPGA. 10mmX10mm, IBM90nm process. 150 MHz prototype,What else changed since the 1990s? “Multi-Core Interconnects: Scale-Up or Melt-Down“ Panel discussion, Hot Interconnects, 2007, Stanford University,Panel abstract: As we anticipate 32, 64, 100+ processors on a single ch

24、ip, the problem of interconnecting the cores looms as a potential showstopper to scaling. Are we heading for the cliff here, or will our panelists bring visions of interconnect architectures, especially those that work on-chip but not between chips, that will enable the scaling to continue? Panelist

25、s from Google, Yahoo, others. Summary Noted several issues with power consumption of multi-core architectures coming from industry: high power consumption of wide communication buses needed to implement cache coherence; basic nm complexity of cache coherence traffic (given n cores and m invalidation

26、s) and its implied huge toll on inter-core bandwidth; and high power consumption needed for a tightly synchronous implementation in silicon used in these designs. Panels conclusion: the industry must first converge to an easy-to-program highly-scalable multi-core architecture. These issues should be

27、 addressed in the context of such an architecture.,How does it work, and what should people know to participate,“Work-depth” Alg Methodology (SV82) State all ops you can do in parallel. Repeat. Minimize: Total #operations, #rounds. Note: 1 The rest is skill. 2. Sets the algorithm Program single-prog

28、ram multiple-data (SPMD). Short (not OS) threads. Independence of order semantics (IOS). XMTC: C plus 3 commands: Spawn+Join, Prefix-Sum (PS) Unique First parallelism. Then decomposition Legend: Level of abstraction Means Means: Programming methodology Algorithms effective programs. Extend the SV82

29、Work-Depth framework from PRAM-like to XMTC Alternative Established APIs (VHDL/Verilog,OpenGL,MATLAB) “win-win proposition” Performance-Tuned Program minimize length of sequence of round-trips to memory + QRQW + Depth; take advantage of architecture enhancements (e.g., prefetch). Means: Compiler: id

30、eally: given XMTC program, compiler provides decomposition: tune-up manually “teach the compiler”,Architecture HW hooks. E.g., HW-supported run-time load-balancing of concurrent threads over processors. Low thread creation overhead. (Extend stored-program + program counter; cited by 15 Intel patents

31、; Prefix-sum to registers & to memory. ) All Computer Scientists will need to know 1 levels of abstraction (LoA) CS programmers model: WD+P. CS expert : WD+P+PTP. Systems: +A.,Merging: Example for Algorithm & Program,Input: Two arrays A1. . n, B1. . n; elements from a totally ordered domain S. Each

32、array is monotonically non-decreasing. Merging: map each of these elements into a monotonically non-decreasing array C12n Serial Merging algorithm SERIAL RANK(A1 . . ;B1. .) Starting from A(1) and B(1), in each round: compare an element from A with an element of B determine the rank of the smaller a

33、mong them Complexity: O(n) time (and O(n) work.)PRAM Challenge: O(n) work, least time Also (new): fewest spawn-joins,Merging algorithm (contd),“Surplus-log” parallel algorithm for Merging/Ranking for 1 i n pardo Compute RANK(i,B) using standard binary search Compute RANK(i,A) using binary search Com

34、plexity: W=(O(n log n), T=O(log n) The partitioning paradigm n: input size for a problem. Design a 2-stage parallel algorithm: Partition the input into a large number, say p, of independent small jobs AND size of the largest small job is roughly n/p. Actual work - do the small jobs concurrently, usi

35、ng a separate (possibly serial) algorithm for each.,Linear work parallel merging: using a single spawn,Stage 1 of algorithm: Partitioning for 1 i n/p pardo p = n/log and p | n b(i):=RANK(p(i-1) + 1),B) using binary search a(i):=RANK(p(i-1) + 1),A) using binary search Stage 2 of algorithm: Actual wor

36、k Observe Overall ranking task broken into 2p independent “slices”. Example of a slice Start at A(p(i-1) +1) and B(b(i). Using serial ranking advance till: Termination condition Either some A(pi+1) or some B(jp+1) loses Parallel program 2p concurrent threads using a single spawn-join for the whole a

37、lgorithm Example Thread of 20: Binary search B. Rank as 11 (index of 15 in B) + 9 (index of 20 in A). Then: compare 21 to 22 and rank 21; compare 23 to 22 to rank 22; compare 23 to 24 to rank 23; compare 24 to 25, but terminate since the Thread of 24 will rank 24.,Linear work parallel merging (contd

38、),Observation 2p slices. None larger than 2n/p. (not too bad since average is 2n/2p=n/p) Complexity Partitioning takes W=O(p log n), and T=O(log n) time, or O(n) work and O(log n) time, for p = n/log n. Actual work employs 2p serial algorithms, each takes O(n/p) time. Total W=O(n), and T=O(n/p), for

39、 p = n/log n.IMPORTANT: Correctness & complexity of parallel programSame as for algorithm.This is a big deal. Other parallel programming approaches do not have a simple concurrency model, and need to reason w.r.t. the program.,Workflow from parallel algorithms to programming versus trial-and-error,O

40、ption 1,PAT,Rethink algorithm: Take better advantage of cache,Hardware,PAT,Tune,Hardware,Option 2,Parallel algorithmic thinking (say PRAM),Compiler,Is Option 1 good enough for the parallel programmers model? Options 1B and 2 start with a PRAM algorithm, but not option 1A. Options 1A and 2 represent

41、workflow, but not option 1B.,Not possible in the 1990s. Possible now. Why settle for less?,Insufficient inter-thread bandwidth?,Domain decomposition, or task decomposition,Program,Program,Memory architecture alternatives,Good news Fits on chip. Allows high-bandwidth interconnection network. Left sid

42、e: Makes sense for high-throughput. Uses cache coherence. Significant toll on bandwidth, power, and chip resources (each processor needs more silicon) Right side: Amortizes memory resources more processors. Unless in local registers (also “read-only caches” & “prefetch buffers”) need round-trip acro

43、ss ICN. Sequence of round-trips to memory a bigger issue. Remaining constraint Off-chip bandwidth remains limited. Still less than for high-throughput, since one program.,Synchrony versus ?,Synchrony Pros,PRAM algorithmic theory Reasoning about correctness. Correlates with determinism Predictable ti

44、ming of computation Synchrony Cons Memory: 1 to 400 clocks separate average-case from worst-case Tighter synchrony more power.Asynchrony? Asynchrony too difficult for algorithms and architecture. What can we do?, Reduced synchrony,Balance (synchronous) PRAM algorithms and a no-busy-wait finite-state

45、-machine (NBW FSM) “ideal”. Role for HW enhanced prefix-sum (F&A) Start with Arbitrary CRCW PRAM algorithms. Set concurrent threads that are as long-as-possible. Each advances at its own speed without letting another thread cause it to busy-wait. When all fails, join (every threads expires) Discipli

46、ned non-determinism.,How I updated my basic intuition I first expected parallel systems to operate through punctual orchestration. “Swiss train system paradigm”: set clock when train leaves the station. Example: Cray 1970s vector machines. Cray was brilliant, but technology stood in the way. Expensi

47、ve cooling was a warning sign. I went through 180-degree conceptual transformation between my SPAA97 and SPAA98 papers. I now expect progress to occur as distributedly as possible.,Accommodating a fixed number of processors (thread controls units, TCUs),Issues,Optimizing two parameters (work and tim

48、e) Can have more than one “best” parallel algorithm: W1T2T3. “building blocks”. Constants matter Cases: (i) Saturated TCUs, and (ii) unsaturated TCUs Ideally: programmer should not rewrite for more TCUs Responsibilities of programmer, compiler, hardware:,Programmer,Algorithm and its XMTC code All bu

49、ilding blocks Compiler Assemble building blocks into ready to run code, given #TCUs, input size, and HW parameters Clustering threads Hardware Initially, allocate virtual threads to TCUs, and then dynamically as TCUs become available No-busy-wait finite-state-machine (NBW FSM) ideal.,Realistic Role

50、for theory,Wing: Computational thinking is often at multiple levels of abstraction (LoA) One of these levels got to be the theory of parallel algorithms (reflecting parallel algorithmic thinking.) The “how does it work” slide demonstrates our PRAM-like approach. If you restrict attention to one laye

51、r of this multi-layer onion, it becomes similar to other approaches, but misses the point. (The XMTC language layer is one of the least innovative in XMT, but gets much attention.) Need the vertical integration to make sense and understand in what ways it is different (unique). Roles for theory and

52、beyond: The algorithms (WD) LoA is traditional PRAM theory. Performance tuning : Experimental Algorithms. Work needed: develope understanding of what gives best performance in implementation. Model, assess and compare HW, and HW options. Model reasoning about multiple levels of abstraction. SW architectures: even for serial.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1