ImageVerifierCode 换一换
格式:PPT , 页数:21 ,大小:1.19MB ,
资源ID:373366      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-373366.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(The value of Post Editing - IBM Case Study.ppt)为本站会员(Iclinic170)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

The value of Post Editing - IBM Case Study.ppt

1、The value of Post Editing - IBM Case Study,Frank X. Rojas, Jian Ming Xu, Santi Pont Nesta, lex Martnez Corri, Salim Roukos, Helena Chapman, Saroj K. Vohra June 2011,2,IBM Case Study MT Post Editing,IntroductionMT InnovationProcess Overview Findings Conclusion / Recommendations,3,IBM World Wide Trans

2、lation Operations,24 Centers World Wide 115 Translation Suppliers,Process 2.8 B Words Translate 0.4 B Words,60 language pairs,One Stop Shop for all Translation Services,Marketing Material,Web,Product Integrated,Information,Publications,Legal/Safety/ Contracts,Machine Translation,Multimedia,Francizat

3、ion,Cultural Consultancy,Centralized DTP,Overall,End to End,Process,Management,4,IBM Professional Translation Services,Professional Memory 72% 85% Re-Use,Unit Cost 50% Reduction,Traditional TechnologyProcess Mgmt,Human Skill,Memory Assets,CAT Editor,Consistent Quality Standards Global Brand Identity

4、 Professional Quality Standards,1,2,3,Future: Ability to reduce cost using conventional methods reaching limits Business pressure for additional cost elimination Looking to MT Technology as next wave to reach business goals,5,Historical Perspective,2006,2007,2008,2009,2011,2012,2010,2010 MT piloting

5、 Pilot: SPA, ITA, FRE, GER - New E2E process Partnership: WWTO/n.Fluent 8.6 M words,2011 MT Training Pilot: GER, BPR, JPN, CHS - MT payment profiles ready 16.0 M words target,eSupport (www) “Translate This Page” JPN pilot / rule engine,Initial n.Fluent/WWTO Spanish MT pilot - Improve efficiency of p

6、rofessional translators,6,MT Critical Success Metrics,Necessary and sufficient condition to measure success 5.0 M words sampled Minimum of 3 languages Net Contribution to ROI by MT Engine: 10% of payable words should be MT No more than 5% adverse impact to Overall Quality Index No more than 5% impac

7、t to Customer Satisfaction Lack of industry metrics and guidance. Active research on MT technology. no guidance on operational impacts A business vacuum existed on how to integrate MT services No operational process had been defined for MT services,7,IBMs Watson Q&A computer Googles autonomous car T

8、echnologies to understand and produce natural human speech Instantaneous, high-quality machine translation Smartphones / App phones in the developing world,*Andrew McAfee is a principal research scientist in the MIT Sloan School of Business,Recent Digital Innovations with Biggest Impact in the Busin

9、ess World*,8,Real-Time Translation Server (RTTS) & n.Fluent,Real Time Translation Server (RTTS) IBMs MT Engine RTTS provides machine translation for n.Fluent & other applications APIs allow other applications to access these translation services. Customization tools Domains, chat-specific models, Co

10、mmercially licensed to IBM partners Language Pairs to/from English:n.Fluent IBMs MT translation application Providing machine translation services for:Text, web pages, and documents (Word, Excel, )Instant Messaging chats (via IM plug-in) Mobile translation application (BlackBerry and others) Enabled

11、 with LEARNING via crowdsourcing (internal 450K IBMers) Deployed for eSupport self serving tech support (external),中文,Deutsch,English,Franais,Italiano,日本語,Portugus,Espaol,9,Historical Perspective,2006,2007,2008,2009,2011,2012,2010,2010 MT piloting Pilot: SPA, ITA, FRE, GER - New E2E process Partners

12、hip: WWTO/n.Fluent 8.6 M words,2011 MT Training Pilot: GER, BPR, JPN, CHS - MT payment profiles ready 16.0 M words target,eSupport (www) “Translate This Page” JPN pilot / rule engine,Initial n.Fluent/WWTO Spanish MT pilot - Improve efficiency of professional translators,10,MT Pre-Process,Editing Ses

13、sion,MT Post Editing End to End Workflow,Upfront & on-going MT tuning via IBM TM professional translations Professional translation = Best context Matching methods Traditional TM breaks down content segment level Machine TM breaks down segments block level using MT models reconstructs segments prese

14、rving formats/mark-up tags MT service level integration,TM Pre-Process,TM Match Analysis,CAT Translation Show best choice vs vs Select best choice (Post Edit rules) Commit language,TESTING QUALITY,MT Model & Trans.,= Localization Kit (NLV Folder),11,18-sept.-08,MT Pre-processing,TM,Build dynamic, do

15、main specific MT model,MT,MT initial corpus,General parallel training corpus,Domain specific parallel training corpus,ALL segment “no match segments”,Translation of no match segments,Initial MT corpus done before start of project,Localization kit,12,18-sept.-08,Xxx xxx xx xxx xxx xxx. La aplicacin d

16、esprotege los archivos antes de exportarlos. Yy yyy yyy,TM Editing Environment,TM Environment,Xxx xxx xx xxx xxx xxx. The application unprotects files before exporting them. Yy yyy yyy,Translation Memory,0 - The application unprotects files before exporting them. 1m La aplicacin desprotege archivos

17、antes de exportarlos. 2f 85% - La aplicacin protege los archivos antes de exportarlos,TM Environment,Ctrl + 1,Typed,Translator options Ignore fuzzy and MT Post edit MT Post edit fuzzy,Two Seconds Rule: Translators are trained on several strategies to make a quick choice,TM,MT,13,Productivity Measure

18、ments,Start segment Choose actionEnd segmentMT productivity evaluation log (MTeval Log) N events Words | Time | Existing Proposal | Used Proposal | . Examine productivity per payment category SUM(Words) / SUM(Time) Use of IBM Business Analytic Tool (SPSS) Trim events that fall into 5% (slowest) and

19、95% (fastest) percentile,accept match 0 time edit match X time reject match manual translation,Each event,EM : Exact RM : Replace FM : Fuzzy MT : Machine NP : No Proposal,A) = “best” Existing Proposal B) = “alternative” Existing Proposal C) = reject all Existing Proposal, 100% human labor,14,Total #

20、 events : 2,309 (377+1,932) Total words: 24,150 Total time: 27,362 3,911 w/ MT match 11,377 w/ MT match 20,239 w/o MT match 15,985 w/o MT matchMT impact to productivity MT : 0.44 words/sec 1777 words / 4071 sec NP 0.21 w/ MT match 0.32 w/o MT match Baseline (placebo)MT Leverage : 71.8% 1777 / (1777+

21、697),Single Shipment EXAMPLE,rate(MT) / rate(NP): 1.37 i.e. Translator can complete 37% more words in the same time.,Key metrics,15,MT Impact on Fuzzy Match : 4Q10 Findings,When FM & MT matches exist simultaneously Productivity: rate(MT) / rate(NP): Case : Translator edits FM FM-MT Combined case Cas

22、e: Translator edits MT,* Findings subject to change with additional sampling.,Overall Machine matches not as good as professional (fuzzy) matchesNo statistical impact to fuzzy productivity to include MT matches. SPA highest sample case,28.6%,4.4%,57.6%,46.9%,FM-MT Pick Rate:,16,MT Key Metrics: 4Q10

23、Findings,8.6 M words sampled in real time translation service. SPA : Qualified MT engine 4Q10 ITA : Qualified MT engine 4Q10 FRA : Qualified MT engine 1Q11 While rate(MT) / rate(NP) is high, the findings were not statistically significant in 4Q. GER : Insufficient productivity from MT engine,* Findi

24、ngs subject to change with additional sampling.,17,Overall Savings Assessment,Overall savings % Word savings due to MT efficiency Convert time savings MT payment factor % MT payment factor X MT % words + NP % words Results in less payable words. MT productivity savings drives a overall savings These

25、 are not the same due to MT % distribution. Supply chain has to consider cost of MT services,* Findings subject to change with additional sampling.,18,Pay for MT Words Translated not MT Matches,We pay for final results (MT payable words) not MT matches MT matches considered “opinion” until chosen by

26、 a human Too many opinions & opinions by immature MT models are less efficient.Actual MT payable words have value beyond the specific project Post Edited words are reused in future and unknown MT contextEngine has to deliver consistent MT payable words Minimum needed to quality an MT engine for comp

27、ensation High MT productivity rate(MT) / rate(NP) High MT leverage % of MT matches used Compensation to be based on MT payment factor,19,Variance across Languages,There is no single maturity path when modeling MT engines across many languages. IBM Pilot: each trained MT engine is a unique asset. Som

28、e languages require more modeling/tuning than others. Language pairs that service “Loose - Structured” languages are struggling German requires more effort than SpanishAre there limitations to statistical MT engines? New thinking may need to be explored?Each MT engine will have separate MT payment f

29、actors.,20,Perspective of MT Post Edit Pilots,Quality / Reliability,LOWER,HIGHER,General,Domain Specific,internal IBM,All IBM external/internal Pubs / UI,external (2011 Pilots),internal IBM,n.Fluent “machine”,WWTO “human”,New,Memory Assets,MT Post Editing has impacts across entire Translation Servic

30、e Hierarchy,21,Professional (Human) memories are the best assets and deliver the highest quality. Professional memories are a key asset for MT success. All Memory assets need to be protected and managed. Flow of memories between Professional and Machine must be properly balanced. Dynamic modeling of

31、fers significant advantage over static modeling. Continuous business analytics is needed to optimize machine assets. A single cost model per language is needed, independent of MT services/engines. An aggressive yet cautious approach is warranted to go forward.,MT Post Editing Project Key Lessons,MT Post Editing does improve productivity and efficiency of a localization supply chain.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1